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Abstract

This paper explores a topological perspective of planning in the presence of uncertainty,
focusing on tasks specified by goal states in discrete spaces. The paper introduces strategy
complexes. A strategy complex is the collection of all plans for attaining all goals in a
given space. Plans are like jigsaw pieces. Understanding how the pieces fit together in a
strategy complex reveals structure. That structure characterizes the inherent capabilities
of an uncertain system. By adjusting the jigsaw pieces in a design loop, one can build
systems with desired competencies.

The paper draws on representations from combinatorial topology, Markov chains, and
polyhedral cones. Triangulating between these three perspectives produces a topological
language for describing concisely the capabilities of uncertain systems, analogous to
concepts of reachability and controllability in other disciplines. The major nouns in this
language are topological spaces.

Three key theorems (numbered 1, 11, 20 in the paper) illustrate the sentences in this
language: (a) Goal Attainability: There exists a strategy for attaining a particular goal
from anywhere in a system if and only if the strategy complex of a slightly modified system
is homotopic to a sphere. (b) Full Controllability: A system can move between any two
states despite control uncertainty precisely when its strategy complex is homotopic to a
sphere of dimension two less than the number of states. (c) General Structure: Any
system’s strategy complex is homotopic to the product of a spherical part, modeling full
controllability on subspaces, and a general part, modeling adversarial capabilities.

The paper contains a number of additional results required as stepping stones, along
with many examples. The paper provides algorithms for computing the key structures
described. Finally, the paper shows that some interesting questions are hard. For instance,
it is NP -complete to determine the most precisely attainable goal of a system with perfect
sensing but uncertain control.

This work was sponsored by DARPA under contract HR0011-07-1-0002. This work does not necessarily
reflect the position or the policy of the U.S. Government. No official endorsement should be inferred.
∗A much abbreviated version of this paper appeared as [28].

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
On the Topology of Discrete Strategies 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,School of Computer 
Science,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This paper explores a topological perspective of planning in the presence of uncertainty focusing on tasks
specified by goal states in discrete spaces. The paper introduces strategy complexes. A strategy complex is
the collection of all plans for attaining all goals in a given space. Plans are like jigsaw pieces.
Understanding how the pieces fit together in a strategy complex reveals structure. That structure
characterizes the inherent capabilities of an uncertain system. By adjusting the jigsaw pieces in a design
loop, one can build systems with desired competencies. The paper draws on representations from
combinatorial topology, Markov chains, and polyhedral cones. Triangulating between these three
perspectives produces a topological language for describing concisely the capabilities of uncertain systems,
analogous to concepts of reachability and controllability in other disciplines. The major nouns in this
language are topological spaces. Three key theorems (numbered 1, 11, 20 in the paper) illustrate the
sentences in this language: (a) Goal Attainability: There exists a strategy for attaining a particular goal
from anywhere in a system if and only if the strategy complex of a slightly modified system is homotopic to
a sphere. (b) Full Controllability: A system can move between any two states despite control uncertainty
precisely when its strategy complex is homotopic to a sphere of dimension two less than the number of
states. (c) General Structure: Any system?s strategy complex is homotopic to the product of a spherical
part, modeling full controllability on subspaces, and a general part, modeling adversarial capabilities. The
paper contains a number of additional results required as stepping stones, along with many examples. The
paper provides algorithms for computing the key structures described. Finally, the paper shows that some
interesting questions are hard. For instance it is NP-complete to determine the most precisely attainable
goal of a system with perfect sensing but uncertain control. 

15. SUBJECT TERMS 



16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

81 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Contents

1 Introduction 4
1.1 Planning Manipulation Strategies with Uncertainty . . . . . . . . . . . . . . . . 4
1.2 Understanding System Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Result Flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Spheres as Topological Descriptors of Task Solvability . . . . . . . . . . . . . . 6
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 An Underlying Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Broader Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 An Example: Nondeterminism, Cycles, and Strategies 9

3 Nondeterministic Graphs and Strategy Complexes 11
3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Loopback Graphs and Complexes 15

5 Topological Tools and Homotopy Equivalence 17
5.1 Deformation Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Collapsibility and Contractibility . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 The Nerve Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 The Quillen Fiber Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Homotopy Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Stochastic Graphs and Strategy Complexes 20
6.1 Stochastic Actions and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Stochastic Acyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Stochastic Strategy Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Covering Sets 25
7.1 Homogeneous Covering Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Affine Covering Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Inferring Topology from Covering Sets . . . . . . . . . . . . . . . . . . . . . . . 26

8 Controllability of Motions in Stochastic Graphs 30
8.1 Connectivity: Covers and Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Characterizing Controllability with Spheres . . . . . . . . . . . . . . . . . . . . 34

9 Topology as a Design Tool: An Example 36
9.1 How Many Design Scenarios? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 Tuning Convergence Times and Designing System Capabilities . . . . . . . . . 37

2



10 Duality 41
10.1 Start Region Contractibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.2 Source Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.3 Contractibility Characterization of Goal Attainability . . . . . . . . . . . . . . 43
10.4 The Dual Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.5 Duality in Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11 Modularity 46
11.1 Graph Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.2 Testing Acyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.3 Simplification via Strongly Controllable Subspaces . . . . . . . . . . . . . . . . 48
11.4 An Example (Air Travel During Thunderstorm Season) . . . . . . . . . . . . . 52

12 Algorithms 55

13 Realizability 59

14 Hardness 60
14.1 The Difficulty of Determining a System’s Precision . . . . . . . . . . . . . . . . 60
14.2 Small Realization is Uncomputable . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.3 Recognizing Repercussions is Uncomputable . . . . . . . . . . . . . . . . . . . . 62

15 Topological Thinking 63
15.1 Topology Precompiles an Existence Argument . . . . . . . . . . . . . . . . . . . 63
15.2 Topological Analysis of Adversity . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.3 Topological Thinking in Partially Observable Spaces . . . . . . . . . . . . . . . 66

15.3.1 Inferring Task Unsolvability From Duality . . . . . . . . . . . . . . . . . 67
15.3.2 Hypothesis-Testing and Sphere Suspension . . . . . . . . . . . . . . . . 69

16 Conclusions 71
16.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
16.2 Other Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
16.3 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

17 Acknowledgments 72

List of Primary Symbols 73

List of Lemmas and Theorems 74

List of Algorithms 75

List of Key Definitions 75

List of Figures 76

References 77

3



1 Introduction

1.1 Planning Manipulation Strategies with Uncertainty

Two themes pervade the last four decades of research in robotic manipulation. The first is the
difficulty of uncertainty, the second is a solution by discrete modeling. The jamming diagram
appearing in Whitney’s classic paper on peg-in-hole assembly [77], grounded in extensive work
at the C.S. Draper Laboratory [62] in the 1970s, illustrates both themes: (i) The precise
location and motion of the peg are uncertain. (ii) The contact state of the peg naturally
discretizes the assembly space. By analyzing this discretized space, [77] produces an automatic
strategy for assembly that is robust in the presence of uncertainty.

As this early example demonstrates, discretization appears in manipulation research to
simplify, but not artificially so. Instead, the mechanics of a problem often generate natural
discrete states even when the initial rendering of the problem is continuous. Contact modes,
describing which features of multiple objects are in contact and how are they sliding relative
to each other, are particularly common methods of discretization. As further illustration, the
cooperative manipulation strategies of [27] are based on discrete states representing regions of
configuration space over which the frictional contact mechanics of the robot palms and the part
are invariant. Discrete states may also capture higher-order information, perhaps modeling
sensing uncertainty. For instance, in the part orienters of [29, 72, 37, 30], the discrete states
considered by the motion planners were sets of underlying contact states of the parts being
oriented. In this manner, sensing uncertainty itself contributes to the definition of state [5, 54].

Delineating relevant states is only part of discrete modeling. One must also describe
transitions between states, with the aim of synthesizing robust manipulation strategies. Anyone
who has ever programmed a robot manipulator quickly learns never to expect a particular
grasping operation or a particular assembly trajectory to succeed. Instead, transitions between
states are generally uncertain, due both to underlying control uncertainty and, in the discrete
case, to approximation effects. As a result, the discrete modeling of a manipulation problem
does not define a standard directed graph, but rather a nondeterministic or stochastic graph, in
which commanded motions may have any one of several possible outcomes. Consequently, one
must program robots by thinking in terms of sets of possible motions not individual trajectories.
The preimage methodology of [56] emphasizes this point and shows how to generate robust
strategies in a fairly general, continuous, setting. In the discrete setting, that methodology is
akin to Bellman-style backchaining [4]. Recent manipulation results [42, 43] demonstrate the
utility of these ideas in stochastic settings.

1.2 Understanding System Capabilities

The description of planning above is highly operational. One can almost turn a crank: Given
a manipulation task, create a discrete representation of the task based on the task mechanics
and uncertainties, then backchain from the task goal. Missing is an understanding of the full
capabilities of such a discrete representation. Operationally, one can report whether a planner
found a plan to perform some task, but one does not understand intrinsically when there should
be a plan and what failure to find a plan really means. It would be good to understand what
the remedy for a failure might be, for instance, more precise sensing, more precise control, a
change in the task goal, or perhaps even a remodeling of the task description and discretization.
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Our field does not even have an adequate language to describe the issues. In control theory,
terms such as “controllable”, “unstable”, and “limit cycle” are common; in graph theory,
“strongly connected”, “source” and “sink”; in Markov chains, “recurrent class”, “transient”
and “absorbing”. In different languages and in different settings, these terms describe similar
concepts, significant for characterizing system capabilities.

Such terms also offer standards by which to design systems. One learns how to create
or destroy limit cycles in control theory, for example. One understands that a finite Markov
chain cannot consist exclusively of transient states, whereas an infinite one can. All effective
engineering fields have such concise descriptions of capabilities. For instance, to pick an
example very different from the previous ones, in computer language theory, one learns that
certain context-free grammars are easily compilable while others are not.

Planning in the presence of uncertainty has no such concise descriptions of capabilities and
thus no concise design standards.

1.3 Topology

A thesis of this paper is that topology provides a language for concise descriptions of system
capabilities. In order to develop that language, we follow a tack common in engineering
disciplines: Given a method for solving any particular problem operationally, one should
attempt to classify problems and solutions generally, for instance, by observing similarities
in problems and exploiting commonalities of solution. In the case of planning for uncertain
systems, a plan seldom exists in isolation; instead it is part of an ensemble of interconnected
strategies for accomplishing an ensemble of interconnected goals in some system.

Topology is good at extracting structure from such an interconnected patchwork. That
structure constitutes our language. Moreover, this language, as we will see, has two desirable
traits:

1. The topological descriptors abstract away details of particular trajectories, focusing
instead on overall system capabilities.

2. The topological descriptors are consistent with existing terminology for standard directed
graphs and Markov chains, while generalizing both.

Our search specifically for a topological language to describe system capabilities was
motivated by Robert Ghrist’s technology transfer between topology and robotics [13, 36, 34, 35],
by Steven LaValle’s work on information spaces [38, 65, 74, 73], and by workshops on topology
and robotics organized by Michael Farber at ETH Zürich in 2003 and 2006 [57].

1.4 Result Flavor

An analogy for understanding the relationship of topology to planning might be the relationship
of linear algebra to vectors written with specific coordinates. Linear algebra provides abstract
techniques for representing and manipulating vectors, independent of coordinates. Anything
one can do with matrix and vector notation one can do as well by writing out arrays of
coordinates and manipulating the coordinates directly. Indeed, ultimately computations in a
computer must work with numbers in some coordinate system. However, the numbers are like
trees that obscure the forest. By thinking instead at the abstract level of linear subspaces,
kernels, eigenvectors, and so forth, one can recognize fundamental structure. How easy it is
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to say that a high-dimensional positive definite system always decomposes into orthogonal
one-dimensional systems; how cumbersome it would be to convey that truth by numbers or
coordinates alone.

This perspective has precedent in other areas of computer science, such as the pioneering
work of Herlihy on asynchronous computation. For instance, [40] shows that an asynchronous
decision task has a wait-free protocol if and only if there exists a certain color-preserving
continuous function between two chromatic simplicial complexes determined by the task. In
other words, a computational problem is equivalent to a topological problem. The simplicial
complexes reflect the structure of the input and output spaces of the task. The continuous
function is a topological constraint between those spaces and thus a constraint on solvability
of the decision task.

In topological robotics, Farber initiated a line of work to describe the topological complexity
of motion planning problems on a space in terms of the cohomology of that space [31]. This
complexity reflects the discontinuities inherent to any controller that maps start and goal
configurations of a robot to trajectories between those configurations.

An early example demonstrating the applicability specifically of algebraic topology to
robotics, and indeed manipulation, appears in the work of Hopcroft and Wilfong [41]. They
use the Mayer-Vietoris sequence on the zeroth and first homology groups to study contact
connectivity. A key result: Under certain conditions on the structure of configuration space,
if there is a motion of two objects starting and ending with the objects in contact, then there
exists a motion throughout which the objects remain in contact.

1.5 Spheres as Topological Descriptors of Task Solvability

The current paper focuses on tasks that may be specified by goal states in some
nondeterministic or stochastic graph; the task is to attain some goal state starting from
anywhere within the graph. A key result (Theorem 1) shows that such a task has a guaranteed
solution if and only if a certain simplicial complex associated with the task is homotopic to
a sphere of a certain dimension. This special result leads to a general graph controllability
theorem (Theorem 11) that characterizes the ability of a system to achieve any goal despite
control uncertainty, again in terms of the existence of a certain sphere. Spheres and contractible
spaces are much like the linear subspaces and trivial kernels in our earlier analogy.

These results are motivated by similar results describing the structure of complete directed
graphs [8] and strongly connected directed graphs [44]. Indeed, our proof techniques build on
the foundations of those two papers. Of additional interest is the extensive analysis in [47].

It is worth noting that the domain of nondeterministic graphs is much richer than that of
directed graphs. It turns out (Section 13) that every finite simplicial complex can be realized via
some nondeterministic graph. This correspondence further underscores the natural connection
of topology to planning in the presence of uncertainty.

1.6 Contributions

The primary contribution of this paper is the previously unseen structure it reveals in planning
problems. The paper shows how the details of a nondeterministic or stochastic graph may be
abstracted away, leaving a purely topological description of the task: One may reason about
task solvability by thinking in terms of spheres and contractible spaces.
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A second contribution is the introduction of particular tools, such as strategy complexes. A
single strategy on a graph is an eventually convergent nondeterministic control law for moving
within some portion of the graph. A strategy complex consists of all possible strategies on a
graph. Strategy complexes can be useful for reasoning about alternate strategies that a system
might need if a selected strategy for accomplishing a task fails unexpectedly.

Third, although largely beyond the scope of this paper, a stream of ancillary results
flows from our characterization of task solvability, among them: (i) One can answer purely
topologically the question whether a collection of actions is essential to solving a task. (ii)
One can recast various questions about tasks into measurements by the Euler characteristic.
(iii) One discovers that all strategies for accomplishing a goal in a nondeterministic graph
must overlap a particular strategy found by backchaining. (iv) One observes that the number
of strategies for attaining a single goal state is either zero or odd (this is the topological
equivalent of Yogi Berra’s direction: “When you come to a fork in the road, take it.”).

We anticipate yet more structure will be discovered in planning problems via the lens of
topology. Indeed, every key topological idea we have looked at thus far has had some significant
meaning when recast in a planning context. The Combinatorial Alexander Dual discussed in
Section 10 is a good example.

1.7 An Underlying Motivation

A longstanding motivation for our research has been a desire to understand system capabilities
and the interplay of sensing and action. That motivation is rooted in a long line of work on
motion planning with uncertainty from the 1980s and 1990s [9, 59, 60, 22, 10, 14, 12, 72, 15,
16, 53, 33, 55, 11] as well as related work on understanding information invariants, such as
natural tradeoffs between sensing and action [70, 21, 18, 2, 19, 52, 26, 17, 45, 46]. The tools for
characterizing system capabilities discussed in Sections 9 and 10 provide a concise topological
language for making such comparisons.

1.8 Broader Context

Applying the ideas in this paper to robotics problems requires front-end work: one needs to
cast a robot task as a motion planning problem within some graph whose transitions are
(potentially) uncertain. Much of robotics research over the past three decades has been
devoted precisely to such reductions. We will not review those techniques here, but point
to two excellent books: [53] and [54]. For instance, in manipulation, one generally needs to
describe the geometry and mechanics of contact, including dealing with issues such as friction,
deformation, and so forth. In many instances, these analyses are fairly local. One then is left
with the task of combining the local information to form global motion planners. The current
paper presents a topological perspective of that second phase.

The topological perspective likely has broader applications than the motivating tasks of
robotic manipulation. Section 11.4 provides a small example. We hope that the techniques in
this paper will be useful for analyzing planning and decision-making problems in a wide variety
of domains, namely those with two modular phases: a front-end discretization phase, followed
by a planning phase. In particular, methods such as those discussed in Sections 9–15 should
be useful not only for planning but for analyzing and fine-tuning the details of the front-end
phase. Potentially relevant additional domains include decisional architecture design, temporal
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reasoning, and hybrid control systems.

1.9 Outline

Our basic approach is to replace the combinatorial structure of a discrete uncertain graph with
the topology of a collection of open sets in Euclidean space. This technique is well-established
for standard directed graphs [8, 44]. We show how to generalize the approach to uncertain
systems. In particular, convergence results for Markov chains appear as intersection properties
of certain affine open cones.

The resulting topology characterizes system capabilities. We indicate how to use such
characterizations for designing desired systems, for analyzing existing systems, and for general
reasoning about motion with uncertainty.

• Section 1 discusses core approaches to planning manipulation strategies and how these
have motivated this paper’s topological inquiry.

• Section 2 provides intuition for understanding nondeterministic graphs and their strategy
complexes, via a series of examples.

• Section 3 formally introduces nondeterministic graphs and their strategy complexes.

• Section 4 introduces loopback graphs and complexes, using these to characterize task
solvability by the existence of topological spheres.

• Section 5 provides background on the topological tools appearing in this paper.

• Section 6 adds stochastic actions to the mix, now permitting both nondeterminism and
stochasticity in a graph.

• Section 7 develops a connection between the combinatorial structure of plans and certain
conical open sets in Euclidean space, useful for measuring a strategy’s convergence times.

• Section 8 characterizes full controllability on a graph, despite control uncertainty, in
terms of the existence of a sphere of dimension two less than the number of states in the
graph.

• Section 9 explores methods for designing systems using the topological tools developed
thus far.

• Section 10 dualizes the earlier spherical characterizations, leading both to contractibility
characterizations and two new simplicial complexes: the source complex and its dual
complex. The source complex consists of all start regions of convergent plans, the dual
complex consists of all potentially unattainable goals.

• Section 11 discusses internal structure: how to combine graphs, how to simplify graphs.
An implemented example illustrates the ideas.

• Section 12 contains algorithms to implement the core ideas of the paper.

• Section 13 proves two realizability theorems, establishing two different ways in which
nondeterministic graphs are just like finite simplicial complexes.

8



• Section 14 shows that ascertaining an uncertain system’s precision is NP -complete. The
section also shows that two natural questions one might ask of graphs are undecidable,
based on the undecidability of recognizing contractibility.

• Section 15 discusses several different ways in which topological thinking illuminates
planning problems.

2 An Example: Nondeterminism, Cycles, and Strategies

Figure 1: Direct access might be blocked.

Figure 2: Nondeterministic graph and associated strategy complex for the motions of Fig. 1.

Legend: Figures in this paper depict nondeterministic actions in two ways: In a graph, as directed
edges tied together by a circular arc, along with a “dot” inside the arc. In a strategy complex, by
multiple outcomes to the right of an “arrow” (→).

Imagine an ambulance rescue in an old complicated city, perhaps after an earthquake.
There are many opportunities for nondeterminism: Entries into the city might be blocked,
maps might be wrong, navigation might lead to circular paths. Let us focus on the final step
in which the ambulance medics must pass through a narrow opening to reach their patient,
as in Fig. 1. Something might go wrong, a collapse of some sort, forcing the rescuers to either
side. Let us suppose the rescuers may then take additional steps around buildings bounding
the original narrow opening to reach their patient.

We can model this scenario using the graph in the left panel of Fig. 2. The action to move
from A (ambulance) to X (patient) might nondeterministically lead to X but perhaps also to B
or C, depending on whether and how a collapse occurs on the direct path from A to X. In the
example, there then are deterministic actions from either B or C to X. Such a graph is essentially
a compressed AND/OR graph [3].

9



We can now represent the strategy (or control law or plan) just described as a solid triangle
(right panel of Fig. 2). The vertices of the triangle are the individual actions to be executed at
any particular location during the rescue operation. So, for instance, the strategy says “When
at location B, execute the action B → X.”

Figure 3: Actions that move between the far locations B and C.

Perhaps it is also possible to move from B to C, as in Fig. 3, and vice-versa. We can augment
our graph to include these actions (left panel of Fig. 4)

Figure 4: With additional (potentially cycle-inducing) actions, the strategy complex now
contains two solid tetrahedra.

Once we have the additional actions B → C and C → B, we have to be careful not to include
both in a strategy. Otherwise, the rescuers (who could be robots, not humans) might cycle
forever between B and C, never reaching their patient at X. Instead, we recognize that there
now exist several distinct strategies for reaching X. These can be represented by the two solid
tetrahedra in the right panel of Fig. 4. Observe that the two tetrahedra intersect in a triangle
that is our original triangle from Fig. 2, but there is no simplex that simultaneously includes
the two actions B → C and C → B.

Each tetrahedron represents a strategy (or control law or plan) consisting of actions that
may be executed without accidentally creating cycles in the graph. Each triangle or edge
or vertex of one of these tetrahedra, formed from a subset of the actions comprising the
tetrahedron, also represents some strategy (perhaps with a different goal).

The semantics of the top tetrahedron of Fig. 4 are:

– When at A, execute the action A → B, X, C.

– When at B, execute either the action B → X or the action B → C.
It does not matter which; pick one, perhaps nondeterministically.

– When at C, execute the action C → X.

10



Nondeterminism appears in both the outcomes and choices of the strategy:

1. Nature acts as an adversary during execution of the action A → B, X, C, making the
outcome uncertain. This can be bad. Fortunately, in the example, the system can
compensate, by executing additional actions.

2. The system has available multiple actions at location B. This is good; it provides
redundancy, alternate paths. The system can either leave the choice of which action
to execute at state B open or it can select a particular action. The tetrahedron in toto
leaves the choice open, effectively increasing nondeterminism, perhaps handing the choice
over to an adversary. Alternatively, if the system chooses a particular action at state B,
it is effectively picking a particular triangular face of the tetrahedron as its true strategy.

Terminology: In the remainder of the paper, we will generally speak of a “strategy” rather
than a “plan”, in order to avoid the suggestion that strategies are created or discovered by
planners. They exist independently of being created or discovered.

3 Nondeterministic Graphs and Strategy Complexes

This section makes precise the intuition of the previous section, focusing on nondeterministic
graphs; Section 6 introduces stochasticity.

3.1 Basic Definitions

Nondeterministic Graphs

A nondeterministic graph G = (V,A) is a set of states V and a collection of (nondeterministic)
actions A. Each A ∈ A is a nonempty set of directed edges {(v, u1), (v, u2), . . .}, with v and all
ui in V . We refer to v as A’s source and to each ui as a (nondeterministic) target of A. If A
has a single target, A is also said to be deterministic.

Action A may be executed whenever the system is at state v. When action A is executed,
the system moves from state v to one of the targets ui. If A has multiple targets, the precise
target attained is not known ahead of time. One can imagine an adversary choosing the target.

Distinct actions may have overlapping or identical edge sets. (For instance, two different
global motion commands might have the same effect at a given state. We could introduce
extra notation to label actions with names, thereby making explicit their individual identity,
but the extra notation would be more cumbersome than informative.)

All graphs, sets of states, actions, and collections of actions in this paper are finite.

Remark: Nondeterministic graphs in which each action is deterministic and no two actions
have the same edge set are equivalent to standard directed graphs.

Terminology: We speak of a graph “state”, reserving the term “vertex” for singleton
simplices in simplicial complexes.
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Acyclic Graphs and Subgraphs

Suppose G = (V,A) is a nondeterministic graph. A possible path of length k in G is a
sequence of states v0, v1, . . . , vk in V such that (vi, vi+1) ∈ Ai, with each Ai an action in
A, for i = 0, . . . , k−1. G is acyclic if none of its possible paths have v0 = vk with k ≥ 1.

A nondeterministic subgraph H = (W,B) of G is a nondeterministic graph in its own right
such that W ⊆ V and B ⊆ A. In particular, any B ⊆ A defines a nondeterministic subgraph
HB = (V,B) of G. We will say that a collection of actions B ⊆ A is acyclic if its induced
subgraph HB is acyclic.

Simplicial Complexes

An (abstract) simplicial complex Σ is a collection of finite sets, such that if σ is in Σ then so is
every subset of σ [61]. The elements of Σ are called simplices; the elements of a simplex and
singleton simplices are both called vertices. Sometimes one refers to the underlying vertex set
of a simplicial complex Σ, which contains all the vertices of Σ and may contain vertices that
could be present in Σ even if they happen not to be. The dimension of a simplex is one less
than the number of its elements. If τ ⊆ σ, with τ, σ ∈ Σ, then one says that τ is a face of σ.

We permit the empty simplex ∅, for combinatorial simplicity [8, 47]. The complex {∅},
consisting solely of the empty simplex, is the empty complex. It is also the sphere of dimension
−1. The complex ∅, consisting of no simplices, is the void complex.

If Σ is a simplicial complex, if Σ′ is some subcollection of Σ, and if Σ′ is a simplicial complex
in its own right, then one says that Σ′ is a subcomplex of Σ.

All simplicial complexes in this paper are finite. Any nonvoid finite simplicial complex
has a geometric realization in some Euclidean space, with relative topology the same as its
polytope topology [61]. Thus we may view Σ as a topological space.

See [61, 6, 39] for a further introduction to topology and simplicial complexes. See Section
5 for a summary of topological tools used in this paper.

Strategy Complexes

Given a nondeterministic graph G = (V,A) with V �= ∅, let ∆G be the simplicial complex
whose simplices are the acyclic collections of actions B ⊆ A. If V = ∅, let ∆G = ∅. We refer
to ∆G as G’s strategy complex and to every simplex in ∆G as a (nondeterministic) strategy.

Observe that no action of G with a self-loop can appear in any simplex of ∆G.

3.2 Examples

In what follows, we abbreviate any action {(v, u1), . . . , (v, uk)} by writing v → u1, . . . , uk.
The graph on the left of Fig. 5 is a standard directed graph. Each edge of the directed

graph is a possible “action” the system could perform, moving it from some state of the graph
to some other state.

The strategy complex of this graph is shown in the right panel of Fig. 5. The biggest simplex
one could possibly expect to see in the strategy complex would be a tetrahedron, consisting
of all four actions present in the directed graph. However, two of the actions, namely 1 → 2
and 2 → 1, could give rise to a cycle in the graph, so no simplex of the strategy complex can
contain both these actions. The complex is in fact generated by two triangles.
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1   2

2   1

2   31   3

This triangle 
constitutes one strategy 

for attaining graph state 3.

This edge is 
the backchained

strategy for attaining
graph state 3.

This edge constitutes 
the strategy to move away
from graph state 1.

Figure 5: The graph on the left defines the strategy complex shown on the right.

The two triangles, as well as three of the five edges in the complex, constitute strategies
for attaining state 3 in the graph. The central edge, consisting of the actions {1 → 3; 2 → 3},
is the strategy one would obtain by backchaining from state 3 in a traditional fashion.

Observe that a strategy complex may contain strategies for a variety of goals. For instance,
the top left edge of the complex in Fig. 5, comprising the set of actions {1 → 3; 1 → 2}, is a
strategy that simply says “move away from state 1.”

1    2,3 2    1,3

Figure 6: The graph on the left has two nondeterministic actions that could create a cycle, so
the strategy complex on the right consists of two isolated vertices.

For contrast, consider the graph of Fig. 6. It contains two actions, one each at states 1 and
2. Each action has two nondeterministic outcomes. The two actions cannot appear together as
a simplex since, depending on the actual nondeterministic transitions at runtime, these actions
could cause cycling in the graph between states 1 and 2. As a result, the strategy complex
consists of two isolated vertices, representing the two strategies “move away from state 1” and
“move away from state 2.” In particular, there are no strategies guaranteed to attain state 3
from the other two states.
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Figure 7: A strongly connected directed graph and its strategy complex. Compare with Fig. 8.

Figure 8: Another strongly connected directed graph and its strategy complex. See also Fig. 7.

It is also instructive to compare the two graphs and strategy complexes shown in Figures
7 and 8. Both graphs are strongly connected directed graphs with three states. The graphs
are not isomorphic or even homomorphic, but their strategy complexes are both topological
circles.

Indeed, Hultman [44] proved: Any directed graph that can be written as the disjoint union
of its strongly connected components generates a strategy complex (he used a different name)
topologically similar to a sphere of dimension n − k − 1, where n is the number of states in
the graph and k is the number of strongly connected components. All other directed graphs
produce contractible strategy complexes (roughly meaning: they can be shrunk to a point; see
Section 5 for a precise definition).

This is a first hint that topology is capturing some significant graph property independent
of the detailed structure of a graph. In the case of directed graphs, the strategy complexes
always look either like spheres or contractible spaces (homotopically; see Section 5).

Remark: The nondeterministic setting is considerably richer than the deterministic setting
of directed graphs. As we will see in Section 13, nondeterministic graphs are able to generate
a much larger collection of topological spaces via their strategy complexes, namely all spaces
describable by finite simplicial complexes. This means nondeterministic graphs and finite
simplicial complexes are essentially identical topological objects. Consequently, one should use
topology to study strategies for solving tasks in uncertain discrete spaces.
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4 Loopback Graphs and Complexes

Now let us modify the graph of Fig. 5. We will add artificial deterministic transitions from
state 3 to each of states 1 and 2. We call these added transitions loopback actions. Think of
these loopback actions as “topological electrodes” that will allow us to measure whether the
graph contains a guaranteed strategy for attaining state 3 from all states.

2  1 1

1  3

3  1

2  3
1  2

3  2
Figure 9: A loopback graph and loopback complex associated with the graph of Fig. 5. The
complex contains 6 vertices, 12 edges, and 6 triangles (shaded). The two triangular endcaps
outlined in dashed red are not part of the complex, since each gives rise to a cycle in the graph.
The complex is homotopic to S1, the circle.

The left panel of Fig. 9 shows the resulting loopback graph. Now imagine constructing the
strategy complex associated with that graph, as shown in the right panel of the figure. We
refer to it as a loopback complex of our original graph. The complex in this case looks roughly
like a polygonal cylinder. The complex is homotopic to a circle, as represented by either open
end of the cylinder.

“Homotopic” means, in this case, that the complex, viewed as a topological space, can
be continuously deformed within itself into a subspace that is topologically a circle. Notice
that one cannot continuously deform the complex (within itself) into a point. This is crucial.
Homotopy type is an equivalence relation on topological spaces. Circles and points lie in
different homotopy equivalence classes. (See Section 5 for precise definitions.)

1    2,3 2    1,3

3    2 3    1
Figure 10: A loopback graph and loopback complex associated with the graph of Fig. 6. The
complex is contractible.

In contrast, suppose we add both possible loopback actions at state 3 to the graph of Fig. 6.
The resulting graph and loopback complex are shown in Fig. 10. Now the loopback complex
is homotopic to a point; one can continuously deform it within itself to a point.
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The Punch Line: No matter how complicated the nondeterministic graph, if we add all
loopback actions to it that transition from some state s to the remaining states, then the
resulting loopback complex will always be homotopic either to a sphere or to a point. A sphere
tells us that there is a strategy guaranteed to attain state s from all states in the graph; a
point tells us that no such strategy exists. We are beginning to see a topological language by
which to characterize system capabilities.

The following definitions and theorem make the previous observation precise. We provide a
proof of the theorem following its statement, both to preserve continuity and to build intuition.
The reader may nonetheless first wish to review the topological tools discussed in Section 5.
The foundations of our proof appear in [8, 44]. Subsequently, we will generalize these techniques
further, namely to stochastic graphs.

Definitions Let G = (V,A) be a nondeterministic graph and suppose s ∈ V is some desired
stop state. We make the following definitions:

• G contains a complete guaranteed strategy for attaining s if there is some acyclic set of
actions B ⊆ A such that B contains at least one action with source v for every v ∈ V \{s}.
Observe that B cannot contain any actions with source s. Moreover, any possible path in
the graph (V,B), that terminates at some vk �= s, may be extended to a longer possible
path. Iterating, this process converges at s, since B is acyclic.

We say: B is a complete guaranteed strategy for attaining s.

• Define G←s to be the nondeterministic graph identical to G except that all actions with
source s have been discarded, replaced instead by (|V |−1)-many loopback actions {(s, v)},
each consisting of a single edge from s to some v, with v ranging over V \{s}.
G←s is a loopback graph of G.

• Define ∆G←s to be the strategy complex associated with G←s.

∆G←s is a loopback complex of G.

• [n] is (standard) shorthand for the set {1, . . . , n}.

Theorem 1 (Goal Attainability) Let G = (V,A) be a nondeterministic graph and s ∈ V .
If G contains a complete guaranteed strategy for attaining s, then ∆G←s is homotopic to

the sphere Sn−2, with n = |V |. Otherwise, ∆G←s is contractible.

Proof. We may assume V = [n] and s = n. The theorem is trivially true for n = 1, so
suppose n > 1.

I. Let B be a complete guaranteed strategy for attaining s and let A′ be the actions of
G←s. For each A ∈ A′, define the open polyhedral cone UA =

⋂
(i,j)∈A{x ∈ Rn | xi > xj}.

Observe that a set of actions {A1, . . . , Ak} is acyclic if and only if UA1

⋂ · · ·⋂ UAk
is not empty.

When nonempty, the intersection is contractible. By the Nerve Lemma (see Section 5.3), ∆G←s

therefore has the homotopy type of
⋃

A∈A′ UA. We claim that this union covers all of Rn except
for the line on which all coordinates are equal. Thus it is homotopic to Sn−2.

To see coverage: Clearly no point with all coordinates equal can be in the union. The
cones determined by the loopback actions cover all points x ∈ Rn for which xn > xi, some i.
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Suppose some x in Rn\{x1 = · · · = xn} is not inside any UA. Then xi ≥ xn for all i, with at
least one xi > xn. Some action B ∈ B has that i as a source. B ⊆ A′, so x �∈ UB, meaning
there is some target j of B such that xj ≥ xi > xn. Repeating this argument with j, etc.,
produces an arbitrarily long and thus cyclic possible path in HB. Contradiction.

II. If G does not contain a complete guaranteed strategy for attaining s, then no simplex
of ∆G←s contains actions at all states of V \{s}. For every simplex σ ∈ ∆G←s there is therefore
a unique nonempty maximal set τσ of loopback actions such that σ

⋃
τσ ∈ ∆G←s . A standard

collapsing argument now shows that ∆G←s is contractible (see Section 5.2). 	


5 Topological Tools and Homotopy Equivalence

One of the most important functions of topology is to recognize equivalences between seemingly
different objects. This section reviews some of the key topological equivalences and tools
for establishing those equivalences. As suggested by Theorem 1, we will use these tools to
characterize system capabilities by assigning topological structures to nondeterministic (and
stochastic) graphs.

Two simplicial complexes, Γ and Σ, are said to be isomorphic, written Γ ∼= Σ, if there is a
bijective correspondence between the vertices of the two complexes given by some function f ,
such that {v1, . . . , vk} is a simplex of Γ if and only if {f(v1), . . . , f(vk)} is a simplex of Σ. In
particular, f preserves simplex dimension.

Two topological spaces, X and Y , are said to be homeomorphic, written X ≈ Y , if there
exist two continuous functions, f : X → Y and g : Y → X, such that g ◦ f = idX and
f ◦ g = idY , where idX is the identity function on X and idY is the identity function on Y .

Isomorphic simplicial complexes are homeomorphic when viewed as topological spaces.
≈ is an equivalence relation in the category of topological spaces. It is perhaps the most

familiar to the reader. Two homeomorphic spaces really are very much the same intuitively,
differing “only” by some continuous transformation with a continuous inverse.

There is a weaker equivalence relation for topological spaces, based on homotopy. This
relation is more akin to the notion of “morphing” similarity one sees in computer graphics. The
equivalence classes one obtains under homotopy turn out to be useful descriptors for planning
in the presence of uncertainty. We can think of these equivalence classes as constituting major
nouns of the language we desired in Section 1. We give the definitions next and then some
tools for establishing homotopy equivalence.

Suppose f0 : X → Y and f1 : X → Y are two continuous functions between topological
spaces X and Y . One says that f0 is homotopic to f1, written f0 � f1, if there exists a
continuous function F : X × [0, 1] → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all
x ∈ X. (Here [0, 1] is the unit interval of the real line.) One can think of F (·, t) as a continuous
“morphing” of f0 into f1 as t varies from 0 to 1.

Two topological spaces, X and Y , are said to be homotopy equivalent (or to have the same
homotopy type or to be homotopic), written X � Y , if there exist two continuous functions,
f : X → Y and g : Y → X, such that g ◦ f � idX and f ◦ g � idY . Observe that the difference
between “homeomorphic” and “homotopic” is the difference between compositions that are
exactly equal to the identity versus merely homotopic to the identity. Thus homeomorphic
spaces are also homotopic.
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A topological space homotopic to a single point is said to be contractible.

It is often difficult to establish homotopy equivalence based on these definitions alone, but
there are several key topological tools that one may use instead. We discuss these next. Once
again, we also refer the reader to [61, 39, 6, 8] for more extensive treatments.

5.1 Deformation Retractions

Suppose A is a subspace of a topological space X. A (strong) deformation retraction of X
onto A is a continuous function F : X × [0, 1] → X such that:

(a) F (x, 0) = x for all x ∈ X,

(b) F (x, 1) ∈ A for all x ∈ X, and

(c) F (a, t) = a for all a ∈ A and all t ∈ [0, 1].

F establishes that X � A [61] and one says that A is a deformation retract of X. More
generally, it is a fact that two spaces are homotopy equivalent precisely when each may be
viewed as a deformation retract of some common encompassing space [39].

We encourage the reader to verify the following facts, as warmup for ideas to come:

(1) Let X be all of n-dimensional Euclidean space except for the origin.
Then X is homotopy equivalent to Sn−1, the sphere of dimension n − 1.

(2) Let X = Rn \ {x ∈ Rn | x1 = · · · = xn }, that is, n-dimensional Euclidean
space with a line removed. Then X is homotopy equivalent to Sn−2.
(The proof of Theorem 1 uses this fact.)

5.2 Collapsibility and Contractibility

Suppose Σ is a simplicial complex and suppose τ and σ are simplices in Σ such that τ is a
proper face of σ. If τ is a proper face of no other simplex in Σ, then one can remove both τ
and σ from Σ to obtain a new complex Σ′ = Σ \ {τ, σ} that has the same homotopy type as Σ.
The process of constructing Σ′ from Σ is called an elementary collapse. The reverse process is
called an elementary anti-collapse. [6]

It is a fact that a finite simplicial complex is contractible if and only if there is a sequence
of elementary collapses and elementary anti-collapses that transforms the complex into a single
point. Finding such a sequence is an uncomputable problem (this goes back to a deep result that
the word problem for groups is undecidable [63]). The special case in which only elementary
collapses are needed is computable; one can try all possibilities. Such complexes are called
collapsible. A classic example of a space that is contractible but not collapsible is the “House
with Two Rooms” [39].

A finite simplicial complex Σ is a cone if there is some vertex v of Σ such that σ
⋃ {v} ∈ Σ

whenever σ ∈ Σ. In this case, v is an apex of the cone. A cone is a classic example of a
collapsible complex.
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The following very useful fact appears as Lemma 7.6 in [8] (the collapsibility argument in the
proof of Theorem 1 uses this lemma):

Notation: σ ± v means σ \ {v} if v ∈ σ and σ
⋃ {v} if v �∈ σ.

Lemma 2 (Björner and Welker, [8]) Suppose Σ′ is a subcomplex of a finite simplicial
complex Σ and suppose for some vertex v of Σ, the collection Σ \ Σ′ is closed under the map
σ �→ σ±v. Then Σ collapses to Σ′ (via a sequence of elementary collapses) and thus Σ � Σ′.

5.3 The Nerve Lemma

Suppose U is some collection of sets (not necessarily distinct). One may define a simplicial
complex called the nerve of U , written N (U), as follows: The simplices of N (U) are given
by the empty simplex and all nonvoid finite subcollections {U1, . . . , Uk} of U such that the
intersection U1

⋂ · · ·⋂ Uk is not empty. See [61, 39].

Lemma 3 (Nerve Lemma, [39]) Let X be a paracompact topological space. Suppose U is a
collection of open subsets of X whose union covers X, such that the intersection of any nonvoid
finite subcollection of sets in U is contractible whenever it is nonempty. Then X � N (U).

The reader can look up the term “paracompact”. See [50, 20, 39]. It is enough for our
purposes to know that any topological subspace of Euclidean space is paracompact.

The Nerve Lemma infers global homotopy type from local contractibility. For instance,
in Theorem 1, we associated to every action of a nondeterministic graph an open set. The
Nerve Lemma allowed us to infer the overall topology of the graph’s strategy complex by
the intersection properties of these open sets. In Section 7, we will associate open sets with
actions in both nondeterministic and stochastic graphs so as to encode the actions’ convergence
properties. Again, the Nerve Lemma will allow us to infer the topology of the graphs’ strategy
complexes.

5.4 The Quillen Fiber Lemma

Another very useful tool is the Quillen Fiber Lemma. We will state it for partially ordered sets
(known as posets). Every simplicial complex Σ defines a poset F(Σ), called the face poset of Σ.
The elements of the face poset F(Σ) are the nonempty simplices of the complex Σ, partially
ordered by set inclusion. One can also construct a simplicial complex Σ(P ), called the order
complex, from any poset P . The simplices of Σ(P ) are given by the finite chains p1 < · · · < pk

in P .
It is a fact that Σ and Σ(F(Σ)) are homeomorphic. Indeed, Σ(F(Σ)) is the first barycentric

subdivision of Σ, usually written as sd(Σ). Abstractly, sd(Σ) is a new complex, whose nonempty
simplices are given by all sets of the form {σ1, σ2, . . . , σk}, with each σi a nonempty simplex
of Σ, and with σi a proper face of σi+1, for i = 1, . . . , k − 1 [69]. Geometrically, the first
barycentric subdivision is a re-triangulation obtained by adding as vertices the centroids (called
barycenters) of all simplices in Σ, then defining new simplices accordingly [71, 61].

Thus posets and simplicial complexes are essentially identical topological objects. For
instance, one may speak of the topology of a poset, implicitly meaning the topology of its
order complex. We will not elaborate on this connection further, but refer the reader to
[8, 6, 75].
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Notation: If Q is a poset, then Q≤q denotes the set {q′ ∈ Q | q′ ≤Q q}, where ≤Q is the
partial order on Q (set inclusion in the case of face posets derived from simplicial complexes).

Lemma 4 (Quillen, [68]) Suppose f : P → Q is an order-preserving map between two
posets. If f−1(Q≤q) is contractible for all q ∈ Q, then P and Q are homotopy equivalent.

5.5 Homotopy Interpretation

It is still a research question to determine fully what the homotopy type of a graph’s strategy
complex really means. Much of the rest of the paper will be devoted to understanding that
meaning for some important special cases.

The encircled vertex, and the two edges
and triangle touching it, collapse away.

Figure 11: The deterministic action 1 → 2 is more precise than the nondeterministic action
1 → 2, 3. The strategy complex makes this explicit, by showing how simplices containing
action 1 → 2, 3 can collapse away while preserving homotopy type.

There is however something very simple we can observe. Suppose G = (V,A) is a
nondeterministic graph. Suppose G contains two distinct actions A ∈ A and B ∈ A with
identical source states such that one action is more precise than the other. Viewed as edge
sets, suppose A ⊆ B. Intuitively, we would expect never to need action B. After all, anything
we can be certain of doing with action B, we can also be certain of doing with action A.

Homotopy equivalence captures this observation via collapsibility. Figure Fig. 11 provides
an example.

In particular, suppose B ∈ σ ∈ ∆G. Let τ = σ ± A. Then B ∈ τ ∈ ∆G as well. So
Lemma 2 tells us that the collection ∆− = {σ ∈ ∆G | B �∈ σ} is homotopy equivalent to ∆G.
In other words, action B is irrelevant. Observe as well that ∆− = ∆G− , where G− is the
nondeterministic graph identical to G except that action B has been removed.

6 Stochastic Graphs and Strategy Complexes

6.1 Stochastic Actions and Graphs

Stochastic Actions

Section 3 defined a nondeterministic action to be a nonempty set of directed edges with
common source. We now define a stochastic action to be a nonempty set of directed edges with
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common source in which each edge is labeled with a transition probability. Formally, we write
a stochastic action A as a nonempty set of labeled pairs in the form {(v, p1u1), (v, p2u2), . . .},
with v and all ui elements of some underlying state space V . As before, v is A’s source and
each ui is a (stochastic) target of A. Each label pi is a transition probability.

The semantics of a stochastic action are Markovian: Action A may be executed whenever
the system is at state v. When action A is executed, the system moves from state v to one of
the targets ui, selected from all of A’s targets with probability pi. We require that each pi > 0
and that

∑
i pi = 1.

Stochastic Graphs

A stochastic graph G = (V,A) is a set of states V and a collection of actions A whose
sources and targets all lie in V . V is also known as G’s state space. An action may be
either nondeterministic or stochastic. As before, distinct actions may have overlapping or
identical edge sets or even identical sets of transition probabilities. And, again, all graphs, sets
of states, actions, and collections of actions in this paper are finite.

A stochastic subgraph H = (W,B) of a stochastic graph G = (V,A) is a stochastic graph
in its own right such that W ⊆ V and B ⊆ A.

Remarks:

• To emphasize: We allow both nondeterministic and stochastic actions in a stochastic
graph.

• Determinism: We may view a deterministic action that transitions from state v to state
u as a special case of either a nondeterministic action, {(v, u)}, or a stochastic action,
{(v, 1u)}. In this paper, it does not matter which.

• Notation: In figures of graphs, we label the edges of a stochastic action with transition
probabilities. In figures of strategy complexes, we indicate the vertex corresponding to
a stochastic action A = {(v, p1u1), . . . , (v, pkuk)} with the label v → p1u1, . . . , pkuk. We
sometimes use this notation in the text as well.

6.2 Stochastic Acyclicity

p

p'

q q' 1    p2,q3 2    p'1,q'3

Figure 12: The graph on the left has two stochastic actions that together could create a cycle
but must eventually converge to state 3. Consequently, the strategy complex on the right
includes not only the individual actions but the full 1-simplex formed by these two actions.
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The two nondeterministic actions of the graph in Fig. 6 did not appear together in a strategy
simplex since together they could lead to infinite looping. Now imagine that the actions are
merely stochastic, as in Fig. 12. Intuitively, we probably do want to permit both these actions
together in a strategy simplex. Although such a strategy might lead to cycling between states
1 and 2, the cycling would be stochastic and therefore not last forever. Eventually the system
would converge to state 3. Indeed, one may even compute the expected convergence times.

We therefore need to modify our definition of acyclicity to account for stochastic
convergence. There are two natural approaches, both grounded in the idea that an adversary
might try to choose actions and transitions in such a way as to keep the system cycling for as
long as possible.

Definition: Given a collection of actions B, let VB = {v | v is the source of some B ∈ B}.
We refer to VB as the start region of B.

Markov Chain Perspective: Suppose G = (V,A) is a stochastic graph (so it may contain
either nondeterministic or stochastic actions or both). Let W be some subset of VA. Now
imagine an adversary who constructs a Markov chain M as follows:

• For every v ∈ W , the adversary selects some action A ∈ A whose source is v.

– If the action A is stochastic, that is, A = {(v, p1u1), . . . , (v, pkuk)}, then the
stochastic transitions of M at v are exactly those given by A.

– If the action A is nondeterministic, that is, A = {(v, u1), . . . , (v, uk)}, then the
adversary further selects one target ui of A. There will be exactly one transition of
M at v, given by an edge from v to ui, occurring with probability 1.

• For every v ∈ V \W , there is a single transition of M at v, consisting of a self-loop with
probability 1.

We refer to such a construction as a Markov chain M with support W and say G contains
(M, W ). Observe that in general G may contain many different (M, W ).

Convergence Time Perspective: Suppose G = (V,A) is a stochastic graph. Associate
to every action A ∈ A a nonnegative transition time δA. Consider the following system of
equations:

tv = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
max

A ∈ A
A = {(v, uj)}

(
max

j
tuj + δA

)
, max

A ∈ A
A = {(v, pjuj)}

⎛⎝∑
j

pjtuj + δA

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if v ∈ VA;

(1)
tv = 0, if v �∈ VA.
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The reader may recognize System (1) as describing a maximization over expected durations
of random walks with variable step times [32], induced by Markov chains (M, VA) contained
in G. It is a form of Bellman’s equation, representing an optimization from an imagined
adversary’s perspective, who is trying to maximize the graph’s convergence times.

The convergence times are 0 for all states at which there are no actions. Otherwise, the
maximizations appearing in System (1) describe adversarial choices. At any state v, the
adversary maximizes over all actions A with source v. If A is a nondeterministic action,
the adversary performs an additional maximization over the convergence times of all targets
of A; if A is stochastic, there appears an expectation over the convergence times of the target
states.

Reminder: A recurrent class of a Markov chain M is a set of states R of M such that the
probability of reaching any state of R from any other state of R is 1, while the probability of
reaching any state outside R is 0. The restriction of M to R induced by transitions at states of
R therefore itself defines a Markov chain. If R consists of a single state, that state is called
absorbing. [32, 48]

The following lemma establishes an equivalence between the Markov chain perspective and
the convergence time perspective:

Lemma 5 (Stochastic Acyclicity) Let G = (V,A) be a stochastic graph with associated
nonnegative action transition times {δA}A∈A.

System (1) has a unique finite solution if and only if the only recurrent classes of any
Markov chain with support W contained in G are formed by the absorbing states V \ W .

Moreover, when the solution is unique and finite, it is nonnegative, that is, tv ≥ 0 for all
v ∈ V .

Proof. We omit the details of the proof. The basic techniques are similar to those used in
Markov Decision Processes. We point to [32, 48, 78]. 	


The previous lemma permits us to move back and forth between the Markov chain and
convergence time perspectives. Often it is best to reason directly about the recurrent classes
induced by a stochastic graph but easier to compute convergence times using System (1). In
particular, when System (1) has a unique finite solution one can use the system in an iterative
fashion to obtain that solution.

6.3 Stochastic Strategy Complexes

We now make some further definitions, leading to strategy complexes in the stochastic setting.

Stochastically Acyclic Collections of Actions

Suppose G = (V,A) is a stochastic graph. G is stochastically acyclic if System (1) has a unique
finite solution for some (and thus any) set of nonnegative action transition times {δA}A∈A.
Similarly, we say that a collection of actions B ⊆ A is stochastically acyclic if the induced
subgraph HB = (V,B) is stochastically acyclic.
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When B is stochastically acyclic, we may view B as a strategy for moving the system into
the complement of B’s start region VB: If the initial state of the system lies inside VB, then
moving under actions of B, the system will eventually stop at some state inside V \ VB. If
the system initially starts in V \ VB, then it remains there. Given specific nonnegative action
transition times {δB}B∈B, we refer to the solution of System (1), written out for HB with those
transition times, as the worst-case expected convergence times of B.

Stochastic Strategy Complexes

Given a stochastic graph G = (V,A) with V �= ∅, let ∆G be the simplicial complex whose
simplices are the stochastically acyclic collections of actions B ⊆ A. If V = ∅, let ∆G = ∅.

This definition is identical to the one we gave earlier for nondeterministic graphs, but our
notion of “acyclic collections of actions” has now been enlarged to include stochastic actions.
Again, we refer to ∆G as G’s strategy complex and to every simplex in ∆G as a (stochastic)
strategy.

Time-Bounded Strategy Complexes

System (1) allows us to define a tower of strategy complexes for any graph G = (V,A).
Suppose we associate nonnegative transition times {δA}A∈A to the actions of G. To every

σ ∈ ∆G we can then associate a maximal worst-case expected convergence time, tmax(σ), defined
to be the maximum time tv obtained as a solution to System (1) when written out for the graph
(V, σ).

Let T ≥ 0 be given. Define ∆T
G = {σ ∈ ∆G | tmax(σ) ≤ T }. Then ∆T

G is a subcomplex of
∆G, representing all strategies whose maximal worst-case expected convergence times are no
greater than T . (Exercise for the reader: Prove that removing actions from a simplex σ cannot
raise tmax(σ), as is required to infer that ∆T

G is a simplicial complex.)
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7 Covering Sets

We wish to understand the topology of strategy complexes and thus the capabilities of
nondeterministic and stochastic graphs. Let us adopt a technique that appeared in the proof
of Theorem 1 and associate to each action an open set. The topology of the resulting collection
of open sets will be the topology of a graph’s strategy complex.

7.1 Homogeneous Covering Sets

Definition: Suppose G = (V,A) is a stochastic graph with V �= ∅. We can assume for
simplicity that V = [n], with n ≥ 1. We associate to each A ∈ A an homogeneous open subset
UA of Rn, which we refer to as a covering set:

• If the action A is stochastic, that is, A = {(i, pjj)} for some set of targets {j}, then

UA =

⎧⎨⎩x ∈ Rn

∣∣∣∣∣∣ xi >
∑
j

pjxj

⎫⎬⎭.

• If the action A is nondeterministic, that is, A = {(i, j)} for some set of targets {j}, then

UA =
⋂
j

{x ∈ Rn | xi > xj }.

In the stochastic case, the open set UA is a halfspace of Rn whose defining hyperplane has
a normal determined by action A’s transition probabilities. In the nondeterministic case, the
open set UA is the intersection of several such halfspaces, one for each possible nondeterministic
target. Observe that the defining hyperplanes all contain the line {x ∈ Rn | x1 = · · · = xn }.

Remark: The collection of all hyperplanes of the form {x ∈ Rn | xi = xj } is known
classically as the Type A braid arrangement in Rn [75]; it is very useful for studying the
poset of all posets on n items [8]. It should therefore come as no surprise that the open sets
{UA}A∈A will allow us to infer the topology of G’s strategy complex. In particular, for a
nondeterministic graph G, we are simply looking at a subposet of that overall poset of posets
on n items. For a stochastic graph G, we have effectively created a poset of stochastic partial
orders, each of which we may think of as a collection of Markov chains all of whose states are
either transient or trivially absorbing (that was the gist of Lemma 5).

7.2 Affine Covering Sets

Definition: In order to study the topology of time-bounded strategy complexes, it is useful
to define affine covering sets. Suppose we associate nonnegative transition times {δA}A∈A to
the actions of G. Then we can define for each A ∈ A an affine open subset U+

A of Rn:

• If A = {(i, pjj)} is stochastic, then U+
A =

{
x ∈ Rn

∣∣∣ xi >
∑

j pjxj + δA

}
.

• If A = {(i, j)} is nondeterministic, then U+
A =

⋂
j {x ∈ Rn | xi > xj + δA }.
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7.3 Inferring Topology from Covering Sets

The following lemma shows that ∆G and N ({UA}A∈A
)

are isomorphic simplicial complexes
(and therefore homeomorphic and homotopic). The lemma generalizes to stochastic graphs a
statement that appeared for nondeterministic graphs early in the proof of Theorem 1.

Lemma 6 (Homogeneous Nerve) Let G = (V,A) be a stochastic graph with V = [n],
n > 0. Suppose ∅ �= B ⊆ A. Then:

⋂
B∈B

UB �= ∅ if and only if B is stochastically acyclic.

Proof. Recall that HB means the subgraph (V,B) of G.

I. Suppose
⋂

B∈B UB �= ∅.
Choose x∗ ∈ Rn so that x∗ ∈ UB for all B ∈ B. Define δB for each B ∈ B as follows:

If B = {(i, pjj)} is stochastic, let δB = x∗i −
∑

j pjx
∗
j .

If B = {(i, j)} is nondeterministic, let δB = x∗i − maxj(x∗j ).

Observe that each δB > 0.
Now consider the system of equations:

ti = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
max

B ∈ B
B = {(i, j)}

(
max

j
tj + δB

)
, max

B ∈ B
B = {(i, pjj)}

⎛⎝∑
j

pjtj + δB

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if i ∈ VB;

(2)
ti = x∗i , if i �∈ VB.

By construction, System (2) has at least one finite solution, given by x∗, that is, ti = x∗i ,
for all i ∈ V . (In fact, the solution holds for all actions B ∈ B, that is, the maximum at state
i in System (2) occurs for every action of B with source i.)

Now suppose that HB contains a Markov chain (M, W ) whose support W is a recurrent
class. Let P = (pij) be the probability transition matrix of M restricted to W . P is a
stochastic matrix in its own right since W is a recurrent class. The transition probabilities pij

are determined from actions of B via the process outlined on page 22. In particular, for every
i ∈ W , some action B ∈ B gives rise to M ’s transitions at state i. Define δi = δB.

Combining this construction with System (2), we see that:

x∗i ≥
∑
j∈W

pijx
∗
j + δi, for all i ∈ W.
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That is only possible if δi ≤ 0 for some i ∈ W , since P is a stochastic matrix. Contradiction.
So, by Lemma 5, B must be stochastically acyclic.

II. Suppose B is stochastically acyclic.

For each B ∈ B, let δB > 0 be arbitrary. Now write out System (1) for HB:

ti = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
max

B ∈ B
B = {(i, j)}

(
max

j
tj + δB

)
, max

B ∈ B
B = {(i, pjj)}

⎛⎝∑
j

pjtj + δB

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if i ∈ VB;

ti = 0, if i �∈ VB.

By assumption, this system has a unique finite solution, call it t∗.
Now consider B ∈ B:

If B = {(i, pjj)} is stochastic, then t∗i ≥ ∑
j pjt

∗
j + δB >

∑
j pjt

∗
j .

If B = {(i, j)} is nondeterministic, then t∗i ≥ maxj(t∗j ) + δB > maxj(t∗j ).

So t∗ ∈ UB for all B ∈ B, establishing that
⋂

B∈B UB �= ∅. 	


In order to obtain the topology of time-bounded strategy complexes we need to be a little
more careful. There may exist gaps in the affine covering sets near the line on which all
coordinates are equal. We will therefore intersect the covering sets with the boundary of a
polyhedral cylinder designed to measure convergence times.

Definition: Given real r > 0, let Cr =
{
x ∈ Rn

∣∣∣ |xi − xj | < r for all i, j ∈ [n]
}

and let ∂Cr

be the boundary of Cr.
Observe: ∂Cr is a polyhedral cylinder with axis given by the line {x ∈ Rn | x1 = · · · = xn }

and with r the cylinder’s “radius”.

Lemma 7 (Affine Nerve) Let G = (V,A) be a stochastic graph with associated nonnegative
action transition times {δA}A∈A. Assume V = [n] and n > 0. Let T ≥ 0 be given.

There exists εT > 0, such that for every 0 < ε < εT :

For every ∅ �= B ⊆ A, B is stochastically acyclic with tmax(B) ≤ T if and only if⋂
B∈B

U+
B

⋂
∂CT+ε �= ∅.

We omit the proof, except to note that the existence of εT in the proof depends on finiteness
of G. We now move directly to the key theorem that describes the topology of strategy
complexes in terms of the topology of covering sets in Rn:
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Theorem 8 (Cover Homotopy) Let G = (V,A) be a stochastic graph with V = [n], n > 0.

Then ∆G �
⋃

A∈A
UA.

Let the action transition times of G be given by nonnegative numbers {δA}A∈A and let T ≥ 0.

Then ∆T
G �

⋃
A∈A

U+
A

⋂
∂CT+ε,

with 0 < ε < εT and εT given as per Lemma 7.

Proof. First, observe that whenever a set of the form UA1

⋂ · · ·⋂ UAk
is nonempty, then

it is convex hence contractible. We therefore obtain

∆G
∼= N ({UA}A∈A

) �
⋃

A∈A
UA.

The isomorphism ∼= follows from Lemma 6 and the homotopy equivalence � follows from
the Nerve Lemma.

Second, observe that whenever a set of the form UA1

⋂ · · ·⋂ UAk

⋂
∂CT+ε is nonempty,

then, while it may not be convex, it is the deformation retract of a convex set, so is contractible.
Consequently, we may apply Lemma 7 and the Nerve Lemma to conclude

∆T
G

∼= N
({

U+
A

⋂
∂CT+ε

}
A∈A

)
�

⋃
A∈A

U+
A

⋂
∂CT+ε. 	


Figure 13: The graph on the left has two stochastic actions (at states 1 and 2) and one
nondeterministic action (at state 3). Its strategy complex, shown on the right, is the boundary
of a triangle.

As an example, let G be the graph of Fig. 13. The graph has three states and three actions,
one at each state. Two of the actions are stochastic and one is nondeterministic. ∆G is the
boundary complex of a triangle.

Fig. 14 shows the previous lemmas and theorem in action, depicting the covering sets
{U+

1 , U+
2 , U+

3 } associated with the three actions of G, assuming all action transition times
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3
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Figure 14: This figure shows a two-dimensional slice of the covering sets associated with the
actions of the graph in Fig. 13, along with intersections of these covering sets. The slice
describes the (x1, x2)-shape of the covering sets at x3 = 1. The figure also shows ∂Cr (drawn
in yellow) for various critical radii r (roughly), with the critical events circled. For reference,
the graph’s strategy complex appears in the upper left corner.
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are 1 and assuming p′ > p > 2
3 . The figure actually shows the (x1, x2)-slice of the cover

{U+
1 , U+

2 , U+
3 } at x3 = 1. Since the covering sets are invariant with respect to a translation

along the direction (1, 1, 1), it is enough to look at such two-dimensional slices to determine
the topologies of ∆G and ∆T

G.
The covering set U+

3 associated with the action 3 → 1, 2 is the intersection of two halfspaces
in R3. It therefore appears as the quadrant {(x1, x2) | x1 < 0 and x2 < 0} in Fig. 14. U+

1 and
U+

2 each arise from stochastic actions and thus appear as affine halfspaces in Fig. 14.
The boundary of the cylinder Cr is drawn for several critical radii, namely those at which

some simplex of ∆G appears. The innermost cylinder has radius r = 1 + ε. Since each action
has transition time 1, this cylinder just touches each of the covering sets U+

1 , U+
2 , and U+

3 .
From a nerve perspective, this geometry produces the three vertices of the complex ∆G. As
the radius grows, the other simplices of ∆G appear. The correspondence between the covering
geometry and the complex topology is highlighted with a dashed double arrow for one critical
event: The intersection U+

1

⋂
U+

3 in the cover {U+
1 , U+

2 , U+
3 } corresponds to the 1-simplex

{1 → p2, q3 ; 3 → 1, 2} in the complex ∆G.

8 Controllability of Motions in Stochastic Graphs

Theorem 1 provides a topological test for guaranteed goal reachability in nondeterministic
graphs. (A similar result holds in the stochastic setting.) We seek a more general result, along
the lines of Hultman’s topological characterization of strong connectivity in directed graphs.
We have the tool of covering sets from Section 7, so let us use that tool to extract topology
from strategies. First, here are some

Definitions: Throughout, let G = (V,A) be a stochastic graph and let S be a nonempty
subset of V (S stands for “stop states”).

• G is a stochastic strategy for attaining S if:

(i) G is stochastically acyclic, and

(ii) V \ VA ⊆ S ⊆ V .

This definition ensures that G contains actions at all states outside of S and that motions
under those actions eventually converge (in a subset of S).

Observe that VA cannot be all of V , since G is stochastically acyclic.

• G contains a complete stochastic strategy for attaining S (on the state space V ) if there
is some set of actions B ⊆ A such that HB = (V,B) is a stochastic strategy for attaining
S. (This definition is consistent with the definition of complete guaranteed strategy from
Section 4, p.16.)

In this case: – We refer to both B and HB as being a complete stochastic strategy
for attaining S (in the graph G or on the state space V ).

– We say S is a stochastically attainable goal (in G or within V ).
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• Suppose I is a subset of V (I stands for “initial states”). G contains a stochastic strategy
for attaining S from I if G contains a subgraph H = (W,B) such that I ⋃

S ⊆ W and
H is a stochastic strategy for attaining S. We refer to H as a stochastic strategy for
attaining S from I. Of course, we may also view H as a complete stochastic strategy for
attaining S, now on the state space W .

This definition captures the idea that a strategy for attaining some set of states from
some other set of states may require moving through some intermediate states, but not
necessarily all of V .

We will presently focus on cases in which I and S are both singleton sets. In such cases,
we speak of attaining one state from another.

8.1 Connectivity: Covers and Chains

The following two lemmas capture the idea that stochastically certain connectivity between
two states in a stochastic (or nondeterministic) graph implies coverage of a particular halfspace
in Rn by the graph’s covering sets. This fact appeared as a special case in the proof of Theorem
1. Subsequently, we will use these two lemmas to characterize graph controllability (Theorems
11 and 12).

Lemma 9 (Stochastic Connectivity) Let G = (V,A) be a stochastic graph with V = [n],
n > 0. Let �, k ∈ V .

Suppose G contains a stochastic strategy for attaining state k from state �. Then

{x ∈ Rn | x� > xk } ⊆
⋃

A∈A
UA.

Proof. While we could give a direct proof, we may also view this lemma as a special case
of Lemma 10, with all action transition times zero. That lemma appears next. 	


Lemma 10 (Time-Bounded Stochastic Connectivity) Let G = (V,A) be a stochastic
graph with associated nonnegative action transition times {δA}A∈A.

Assume V = [n] and n > 0. Let �, k ∈ V be given.
Suppose G contains a stochastic strategy for attaining state k from state �. Let t� be the

worst-case expected convergence time to attain k from �, as given by the solution of System (1)
when written out for this stochastic strategy. Then

{x ∈ Rn | x� > xk + t� } ⊆
⋃

A∈A
U+

A .

Proof. Let H = (W,B) be the subgraph of G constituting the given stochastic strategy for
attaining k from �. So �, k ∈ W . We can assume without loss of generality that W = [k], so it
is enough to show that {

x ∈ Rk | x� > xk + t�
}

⊆
⋃

B∈B
U+

B ,

with each set U+
B now a subset of Rk.
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If � = k, there is nothing to prove, since the set on the left is the empty set, which is a
subset of all sets. So assume � �= k.

Here is System (1) written out for H:

ti = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
max

B ∈ B
B = {(i, j)}

(
max

j
tj + δB

)
, max

B ∈ B
B = {(i, pjj)}

⎛⎝∑
j

pjtj + δB

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for 1 ≤ i < k;

(3)
tk = 0.

Since H is stochastically acyclic, this system has a unique finite solution with all ti ≥ 0.

Suppose there is some x∗ ∈ Rk such that x∗� > x∗k + t� but x∗ �∈ ⋃
B∈B U+

B . Since the sets
U+

B are invariant with respect to translation along the line
{
x ∈ Rk | x1 = · · · = xk

}
, we can

assume without loss of generality that x∗k = 0.

Now define a Markov chain M contained in H, with support [k−1]:

• At state k, let M remain at k with probability 1.

• At state i ∈ [k−1], pick some action B ∈ B whose source is i. Such an action must
exist, since H is a complete stochastic strategy for attaining k on the state space W . Let
δi = δB.

– If B is stochastic, that is, B = {(i, pjj)} for some set of targets {j}, then let M ’s
transitions at i be exactly those of B.
Observe that x∗i ≤ ∑

j pjx
∗
j + δi, since x∗ �∈ U+

B .

– If B is nondeterministic, then there must be some target j of B such that x∗i ≤ x∗j+δi,
again since x∗ �∈ U+

B . Let M move from i to j with probability 1.

Let P = (pij) be the probability transition matrix of M . (It is a k × k matrix.) Since H is
stochastically acyclic, M cannot have any recurrent classes other than the absorbing state k,
and therefore the following system has a unique finite solution (this reasoning is at the heart
of Lemma 5; see also [48]):

xi =
k∑

j=1

pijxj + δi, for 1 ≤ i < k;

(4)
xk = 0.

Moreover, one may obtain the solution to System (4) by iteration, starting from any initial
seed for x1, . . . , xk−1. (This is a standard result from Markov chains; it follows in particular
from the theorem on p. 389 of [32].)

We will now iterate from two different seeds, obtaining contradictory results:
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Iteration Scheme #1:

• Initialize x
(0)
i = ti, for i = 1, . . . , k, where {ti}k

i=1 is the solution to System (3).

• For m = 0, 1, . . ., iterate using the update rules:

x
(m+1)
i =

k∑
j=1

pijx
(m)
j + δi, for 1 ≤ i < k;

x
(m+1)
k = 0.

We claim that x
(m)
i ≤ ti for all i = 1, . . . , k and all m = 0, 1, . . . .

To see this:
The claim is certainly true for all i when m = 0 and also for i = k for all m.
Inductively, suppose the claim holds for some m ≥ 0. Then, with 1 ≤ i < k:

x
(m+1)
i ≤

k∑
j=1

pijtj + δi ≤ ti.

The first inequality follows from the inductive hypothesis, the second from
the fact that the right side of System (4) is a special case appearing in the
maximizations of System (3).

Consequently, xi = lim
m→∞x

(m)
i ≤ ti, for i = 1, . . . , k,

where {xi}k
i=1 is the solution to System (4).

Iteration Scheme #2:

• Initialize y
(0)
i = x∗i , for i = 1, . . . , k, where x∗ is as supposed earlier.

• For m = 0, 1, . . ., iterate using the update rules:

y
(m+1)
i =

k∑
j=1

pijy
(m)
j + δi, for 1 ≤ i < k;

y
(m+1)
k = 0.

We claim that y
(m)
i ≥ x∗i for all i = 1, . . . , k and all m = 0, 1, . . . .

Verifying:

Again, the claim is true for all i when m = 0 and also for i = k for all m.
Inductively, suppose the claim holds for some m ≥ 0. Then, with 1 ≤ i < k:

y
(m+1)
i ≥

k∑
j=1

pijx
∗
j + δi ≥ x∗i .

The first inequality follows from the inductive hypothesis, the second from
the construction of M .

Consequently, this time we see that

xi = lim
m→∞ y

(m)
i ≥ x∗i , for i = 1, . . . , k.
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Combining the results of the two iteration schemes, we infer that x∗i ≤ ti for i = 1, . . . , k.
In particular, for i = �, recalling the definition of x∗, we see that

t� = 0 + t� = x∗k + t� < x∗� ≤ t�.

That says t� < t�, a contradiction. 	


8.2 Characterizing Controllability with Spheres

The following two theorems characterize topologically the ability of a finite discrete system to
reach any state from any other state despite control uncertainty.

Theorem 11 (Graph Controllability) Let G = (V,A) be a stochastic graph with V �= ∅.
The following two statements are equivalent:

(i) For every pair of states v, u ∈ V , G contains a stochastic strategy for attaining u from v.

(ii) ∆G � Sn−2, with n = |V |.

Clarification: In (i), the strategy may depend on v and u, that is, different pairs of states
may give rise to different strategies.

Proof. If V consists of a single state, then the empty simplex is a stochastic strategy
for attaining that state from itself. In fact, that is the only possible stochastically acyclic
collection of actions of G; any action of G must be a self-loop. Consequently, ∆G = {∅}, which
by convention is the sphere of dimension −1, i.e., n − 2. So, henceforth we may assume that
V = [n], with n ≥ 2.

I. Proof that (i) implies (ii):

We repeatedly use Lemma 9 to infer that
⋃

A∈A UA contains every point of Rn except the
line on which all coordinates are equal. Thus ∆G � Sn−2, by Theorem 8.

II. Proof that (ii) implies (i):

Suppose (i) is false. Then there must be some s ∈ V such that G does not contain a
complete stochastic strategy for attaining s (on the state space V ). Define a new stochastic
graph G+s = (V,A′), where A′ is the union of A and all possible loopback actions at s. (This
construction is similar to that appearing in the proof of Theorem 1, except that we have added
loopbacks at s rather than merely replaced the existing actions at s with loopbacks.)

Since G+s contains all the actions of G,⋃
A∈A

UA ⊆
⋃

A∈A′
UA.

By Theorem 8,
⋃

A∈A UA � Sn−2.

Using the fact that the covering sets UA are homogeneous and invariant with respect to
translation along the line {x ∈ Rn | x1 = · · · = xn }, as well as the fact that no proper subset
of a sphere is homotopic to that same sphere, one sees that

⋃
A∈A′ UA � Sn−2.
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On the other hand, a collapsibility argument very similar to that used in the proof of
Theorem 1 shows that ∆G+s must be contractible. By Theorem 8,

⋃
A∈A′ UA has the same

homotopy type as ∆G+s . That says Sn−2 is contractible, a contradiction. 	


Definition: A graph is fully controllable if, for any initial state and any stop state, the graph
contains a stochastic strategy for attaining the stop state from the initial state.

Example: The strategy complex of the graph in Fig. 13 is homotopic to a circle, i.e., to Sn−2.
Every action in the graph is uncertain, with either nondeterministic or stochastic outcomes.
Nonetheless, Theorem 11 tells us that the graph is fully controllable.

Key Point: Despite significant control uncertainty, all states are precisely attainable.

The Power of Topology: One can easily verify the theorem’s assertion by inspection for
the example of Fig. 13. For instance, the system can be certain of attaining state 2 from state
1 via the strategy {1 → p2, q3 ; 3 → 1, 2}. What we do not know is the exact path the system
will take: It may move directly to state 2 from state 1 or it may move through state 3. In
fact, it may even cycle for a while between states 1 and 3 before moving to state 2. This is
exactly one of the properties we sought in the Introduction (see again page 5): When planning
in the presence of uncertainty, one should focus not on specific trajectories but entire classes
of motions. Topology is doing this naturally for us.

Here is a time-bounded version of Theorem 11:

Theorem 12 (Time-Bounded Graph Controllability) Let G = (V,A) be a stochastic
graph with V �= ∅ and with associated nonnegative action transition times {δA}A∈A. Let T ≥ 0
be given. The following two statements are equivalent:

(i) For every pair of states v, u ∈ V , G contains a stochastic strategy σvu for attaining u
from v with maximal worst-case expected convergence time tmax(σvu) no greater than T .

(ii) ∆T
G � Sn−2, with n = |V |.

Proof. The proof is similar to that given for Theorem 11. One difference is that the covering
sets U+

A are not homogeneous (they are still invariant with respect to translation along the line
in Rn on which all coordinates are equal). This fact is one reason Lemma 7 uses the cylinder
∂CT+ε. 	


Remark: Theorem 1 in Section 4 established a two-world scenario for nondeterministic
loopback graphs: ∆G←s is homotopic either to Sn−2 or to a point, depending on whether
G contains a complete guaranteed strategy for attaining s, or not, respectively. The same
result holds for stochastic loopback graphs, both in the general case and in the time-bounded
case. In the time-bounded case, we associate transition time zero to each loopback action.
Thus, ∆T

G←s
is homotopic either to Sn−2 or to a point. If G contains a complete stochastic

strategy for attaining s, all of whose worst-case expected convergence times are bounded by
T , then ∆T

G←s
is homotopic to a sphere. Otherwise, ∆T

G←s
is homotopic to a point.
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9 Topology as a Design Tool: An Example

We are beginning to understand how the topology of a strategy complex reflects a system’s
capabilities. Theorem 11 tells us that homotopy equivalence between the system’s strategy
complex and a sphere of dimension two less than the number of system states is equivalent to
full controllability.

Moreover, while it remains a research question to understand the full implications of
homotopy equivalence, we will soon see that the strategy complex precisely characterizes
the stochastically attainable and (potentially) unattainable goals of a system. Of course,
full controllability means that all goals are stochastically attainable. In the absence of full
controllability, the strategy complex still informs us about system capabilities, in a manner to
be explained in the next section.

This section illustrates how a strategy complex may be used as a design tool: We turn
design knobs while watching how the strategy complex changes, freezing the design when the
strategy complex exhibits a desired topology.

Figure 15: The parameter space for designing an action at state 1. The tuning parameter,
drawn in green, consists of an interval and a point. The action is depicted, also in green, for
four characteristic parameter values.

Let us revisit the three-state example of Fig. 13, but now consider the situation in which we
are designing the actions and the control error. There is one action at each state. The action
may be a deterministic transition to one of the other two states, or a stochastic motion to both
those states, with tunable transition probabilities, or a nondeterministic motion to both those
states. Fig. 15 shows the possible tuning parameter for the action at state 1.

9.1 How Many Design Scenarios?

Counting the design scenarios depends on one’s perspective:

• Degrees of Freedom: The design problem is a three-degree-of-freedom problem.
Each degree of freedom may be modeled as [0, 1]

⋃{�}, where [0, 1] represents the
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stochastic continuum whose endpoints are the deterministic actions and � represents
the nondeterministic action.

• Characteristic Cases: As the English description above suggests, there are four
characteristic cases for each tuning parameter, so 64 characteristic cases overall. Ignoring
symmetries, there are 16 cases.

Comment: Á priori, the precise transition probabilities for a stochastic action could
be significant. They certainly affect convergence times, and thus the complexes ∆T

G.
However, varying the probabilities does not affect the homotopy type of ∆G, except
possibly at an endpoint when some transition probability goes to zero.

• Topologically: There are 8 distinct strategy complexes possible, as we will see shortly.
In fact, ignoring symmetries, there are only 4 topologically distinct cases. In other
words, from the perspective of overall system capabilities, as measured by stochastically
attainable goals, this design problem entails a choice between four different systems.

9.2 Tuning Convergence Times and Designing System Capabilities

(0,0,1)

(1,1,1)

∆G
T

G

Covering Sets of G

∂C
T+ε

x
2

(2D slice at x
3
= 1) x

1

Figure 16: One may design system capabilities by tuning the topology of ∆T
G: As the design

parameters change, so do the covering sets associated with the graph’s actions. The homotopy
type of the cover intersected with ∂CT+ε coincides with the homotopy type of the simplicial
complex ∆T

G. This figure shows a snapshot of that process. As did Fig. 14, the figure shows a
two-dimensional slice of the three-dimensional covering sets. See text for further details.
Color Legend: Corresponding graph actions, covering sets, and simplices are color-coded. In case
color is not visible, placements are as in Figures 13 and 14.

Probabilities: The actions at states 1 and 2 are stochastic. To reduce clutter, the figure only shows
the probabilities of moving from state 1 to 2 and vice-versa.
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Fig. 16 shows a snapshot of the tuning process. The upper right frame shows the graph
and its actions for the current choice of tuning parameters, the big frame on the left shows the
(x1, x2)-slice at x3 = 1 of the actions’ covering sets. As in Section 7, each action’s covering
set gives rise to a vertex of the simplicial complex ∆T

G, shown in the lower right frame of the
figure. Also drawn over the covering sets is a convergence time cylinder ∂CT+ε for some desired
convergence time T . Key intersection points of the covering sets within this desired time are
highlighted. They give rise to the edges in the complex ∆T

G; the thickness of an edge is roughly
proportional to the difference between the maximal convergence time of the edge (viewed as a
stochastic strategy) and the maximal time T permitted.

Figure 17: A slice of the design space from the perspective of the resulting stochastic graphs. Ai

means the action at state i. In the slice shown, A3 is nondeterministic while the parameters for
actions A1 and A2 vary over their full ranges. For the stochastic range of each parameter, the
figure depicts a representative action. To reduce clutter, the figure only shows the probability
of moving from state 1 to 2 or vice-versa. See Fig. 18 for the associated covering sets and
Fig. 19 for the associated simplicial complexes.

Figures 17–19 depict a two-dimensional slice of the three-degree-of-freedom design space
from three perspectives. In this slice, the tuning parameter for the action at state 3 is fixed to
be nondeterministic, while the tuning parameters for the actions at states 1 and 2 vary. Fig. 17
shows how the graphs vary as the tuning parameters vary, Fig. 18 shows how the covering sets
vary, and Fig. 19 shows how the simplicial complexes ∆G vary (we now ignore the precise
convergence times, focusing on ∆G not ∆T

G). Since there are three actions without self-loops,
∆G always contains all three actions as vertices. ∆G cannot be the full triangle on those three
vertices, since such a triangle would not be stochastically acyclic. Consequently, there should
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Figure 18: A slice of the design space from the perspective of the resulting covering sets.
The covering sets shown correspond to the graphs of Fig. 17, assuming all actions have unit
transition time.

Figure 19: A slice of the design space from the perspective of the resulting simplicial complexes
∆G. The complexes shown correspond to the covering sets of Fig. 18.
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Figure 20: There are four topologically distinct simplicial complexes attainable by varying
the design parameters of a three-state graph with one (acyclic) action at each state. These
complexes describe the inherent capabilities of the system under varying degrees of control
uncertainty. The columns classify the 64 characteristic design cases in terms of the complexes
they generate. The leftmost column corresponds to full controllability. The example of Fig. 13
is circled.

Legend: Each characteristic case is summarized by a 3-letter code, with the ith letter describing the
action at state i as follows:

S: stochastic
N: nondeterministic

m: deterministic transition to state i − 1
p: deterministic transition to state i + 1

(with wraparound at 3/1)

be as many different complexes in the full design space as there are ways to form edges from
three vertices, namely eight ways. Indeed, inspection of Fig. 19 reveals eight unique complexes;
the full design space repeats these. Ignoring symmetries, there are in fact only four distinct
complexes, shown in the top row of Fig. 20.

One may now classify each of the 64 characteristic cases of the design space by the type of
its associated strategy complex ∆G, as shown in the columns of Fig. 20.

Section 10 discusses in more detail what each of the four complexes means. We already
know that the complex defining the leftmost column constitutes full controllability. We thus
see twenty-seven different characteristic implementations that attain full controllability. The
example of Fig. 13 is circled.
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Design Implications: From a design perspective, one may now use other constraints to
decide which of the twenty-seven implementations might be desirable for full controllability.
Moreover, one may tune the convergence times using the idea described in Fig. 16. This process
is much like choosing forces within the nullspace of a grasp to satisfy some design criterion
while maintaining a specific equilibrium grasp on an object [51].

10 Duality

In order to understand better how the complex ∆G describes system capabilities, we need to
develop a perspective dual to the spherical perspectives of Theorems 1 and 11. In the process,
we will see how backchaining and contractibility of certain subcomplexes are manifestations of
the same idea. Finally, we will see how to match complexes with design criteria.

10.1 Start Region Contractibility

Consider the start region Vσ of some simplex σ of stochastically acyclic actions in a graph
G. As we will see in this section, the subcomplex induced by all actions of the graph with
sources in that region is contractible. Intuitively, contractibility is consistent with viewing σ
as a collapsing of Vσ, moving the system off those states.

Definitions Suppose G = (V,A) is a stochastic graph and W ⊆ V . Define the following:

• A|W is the collection of all actions of G whose sources lie in W .

• WA is the union of W and all targets of actions in A|W .

• G|W = (WA,A|W ). Intuition: G|W is a subgraph of G, induced by all the actions
of G whose sources lie in W but whose targets may lie outside of W .

• A moves off W if A ∈ A|W and one of the following is true:

(i) A is stochastic with at least one of its targets in V \W , or

(ii) A is nondeterministic with all of its targets in V \ W .

Lemma 13 (Contractibility of Start Regions) Let G = (V,A) be a stochastic graph.
Suppose W = Vσ for some σ ∈ ∆G. Then ∆G|W is contractible.

Proof. If W = ∅, then ∆G|W is the void complex ∅, which is considered contractible [47]
(do not confuse it with the empty complex {∅}).

If W �= ∅, then there there is some action A ∈ A|W that moves off W . To see this, suppose
otherwise. Imagine constructing a Markov chain M with support W from the graph (V, σ) via
the process of page 22. If no action A moves off W , then an adversary can ensure that M has
no transitions to states outside of W . This means M must contain a recurrent class within W ,
since the chain is finite [32]. That contradicts the stochastic acyclicity of σ (recall Lemma 5).

Now suppose τ ∈ ∆G|W . Consider τ ′ = τ
⋃ {A}. If τ ′ is not stochastically acyclic, then

τ ′ must give rise to some Markov chain (M, W ′) whose support W ′ is a recurrent class. Since
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τ is stochastically acyclic, M must include transitions induced by A. Since A moves off W it
moves off W ′, contradicting the assumed recurrent nature of W ′.

Consequently, τ ′ is stochastically acyclic, establishing that ∆G|W is a cone with apex A,
hence contractible. 	


Remark: A similar result holds for the time-bounded case. The proof is more involved. The
problem in the time-bounded case is that the action A appearing in the proof above need no
longer be a cone apex for the complex ∆T

G|W . The reason is that some worst-case expected
convergence time of τ ′ may exceed the desired bound T , even though τ and A separately satisfy
the bound. One must therefore argue differently. In particular, one can return to the covering
set approach and see that the cover corresponding to ∆T

G|W must be contractible.

10.2 Source Complex

This section associates a new simplicial complex to every graph, called the source complex, in
effect compressing the graph’s strategy complex. The main result is that compression preserves
homotopy type. This result explains a slight sleight of hand in the discussion of Section 9. Even
though strategy complexes reside in a space of actions, we managed to view the complexes as
sitting on the original graph. Doing so was very natural in the example of Section 9 since the
graph contained exactly one action at each state. The current section establishes that one may
always view the strategy complex as residing back on the graph, via the compression to source
complexes.

Definition: The source complex ∆G of a stochastic graph G = (V,A) is the collection
{Vσ | σ ∈ ∆G }. The underlying vertex set of ∆G is V .

It is easy to check that ∆G really is a simplicial complex.

∆G describes all possible start regions of strategies definable by actions of G. The
complements of those start regions, that is, sets of the form V \ Vσ, describe all stochastically
attainable goals. Observe that V is never a simplex of ∆G, since any purported strategy with
actions at all states of a graph would actually cycle forever.

Theorem 14 (Compression Preserves Homotopy Type) Let G be a stochastic graph.

∆G � ∆G.

Proof. Let P = F(∆G) and Q = F(∆G) be the face posets of the two complexes.
Define f : P → Q by f(σ) = Vσ. Suppose W ∈ Q. Then f−1(Q≤W ) is the face poset of

∆G|W , which is contractible by Lemma 13. The desired result now follows from the Quillen
Fiber Lemma. 	


Remark: Again, a similar result holds for the time-bounded case.

The following lemma is a useful tool:

Lemma 15 (Source Complex Membership) Let G = (V,A) be a stochastic graph.
Suppose W is a nonempty proper subset of V such that every proper subset of W is a simplex
in ∆G. Then W ∈ ∆G if and only if G contains an action that moves off W .
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Proof. One direction follows from the proof of Lemma 13.
For the other direction, suppose A moves off W . Let v be the source of A. By assumption,

there is some σ ∈ ∆G such that Vσ = W \ {v}. Consider τ = σ
⋃ {A}. τ is stochastically

acyclic since σ is stochastically acyclic and since any transitions at v induced by A in a Markov
chain derived from τ have probability less than 1 of remaining in W . Vτ = W , so W ∈ ∆G.
	


10.3 Contractibility Characterization of Goal Attainability

We now obtain a result dual to Theorem 1. The proof of the following theorem makes explicit
the connection between backchaining and contractibility.

Definition: Suppose Σ is a simplicial complex with underlying vertex set V . A minimal
nonface of Σ is a set W ⊆ V such that W is not a simplex of Σ but every proper subset of W
is a simplex of Σ.

Theorem 16 (Contractibility Characterization of Goal Attainability)
Suppose G = (V,A) is a stochastic graph and ∅ �= S ⊆ V . S is a stochastically attainable
goal in G if and only if ∆G|W is contractible for every W ⊆ V \ S.

Proof. I. Suppose G contains a complete stochastic strategy for attaining S ⊆ V .

Then there is some σ ∈ ∆G such that Vσ = V \S. By Lemma 13, and the simplicial nature
of σ, we see that ∆G|W is contractible for every W ⊆ Vσ.

II. Suppose ∆G|W is contractible for every W ⊆ V \ S.

We now construct σ ∈ ∆G by backchaining:

1. Initialize S∗ := S and σ := ∅.
2. If S∗ = V , then done; return σ.

3. Otherwise, as shown below, G contains an action A that moves off V \ S∗.
Let v be the source of A. Update S∗ := S∗

⋃ {v} and σ := σ
⋃ {A}.

4. Repeat Steps 2 and 3 until done.

It is easy to see that the σ returned in Step 2 really is stochastically acyclic. Vσ = V \ S,
so σ is a complete stochastic strategy for attaining S, as desired.

To complete the proof, we need to establish the existence of action A in Step 3. Suppose
no such A exists. By the proof of Lemma 13, this means V \ S∗ �∈ ∆G. Choose nonempty
W ⊆ V \ S∗ such that W /∈ ∆G but every proper subset of W is a simplex of ∆G. In other
words, W is a minimal nonface of ∆G. Observe that W is also a minimal nonface of ∆G|W .

Á priori, the underlying vertex set of ∆G|W is the state space WA of G|W , but no state
outside W can be a vertex of ∆G|W since G|W contains no actions at such states. Consequently,
W being a minimal nonface, ∆G|W is the boundary complex of the full simplex on W . Thus
∆G|W � S|W |−2. On the other hand, Theorem 14 implies ∆G|W � ∆G|W , which is contractible.
Contradiction. 	
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10.4 The Dual Complex

In algebraic topology, geometric duality becomes algebraic duality. The theorems are often
formulated for nonempty proper subsets of spheres. Given the importance of spheres when
reasoning about strategy complexes, one imagines that duality might help illuminate the
homotopy type of a strategy complex. There is a simple combinatorial description for simplicial
complexes of a particular duality known as Alexander Duality [7]. Formally, given a simplicial
complex Σ with underlying vertex set V , its Combinatorial Alexander Dual is the complex
Σ∗ = {σ ⊆ V | V \ σ �∈ Σ}. Observe that (Σ∗)∗ = Σ.

The Alexander dual of a source complex has an important natural meaning: it describes
all goals that are not stochastically attainable (in the sense of page 30), as follows.

Definition: The dual complex ∆*
G of a stochastic graph G = (V,A) is the collection{

V ∗ ⊆ V
∣∣∣ V \ V ∗ �∈ ∆G

}
. The underlying vertex set of ∆*

G is again V .

It is again easy to verify that ∆*
G is a simplicial complex. Moreover, it follows from the

definitions that V ∗ ∈ ∆*
G if and only if there is no strategy σ ∈ ∆G such that V \Vσ ⊆ V ∗. In

other words, we may think of ∆*
G as encoding all the potentially unattainable goals, meaning

there is no stochastic strategy for attaining such a goal from everywhere in the graph.
The reader may be wondering why we have not also defined a simplicial complex to define

the stochastically attainable goals. The answer is that simplicial complexes must satisfy some
kind of monotone property: subsets of simplices must also be simplices. Failure to attain a
goal is a monotone property; if we cannot be certain of attaining a goal of some size when
planning with uncertainty, then we also cannot be certain of attaining any subset of that goal.
In contrast, attainability is not similarly monotone; just because we can attain some goal does
not mean we can attain a more precisely defined goal.

In short, start regions and potentially unattainable goals define simplicial complexes via
the source and dual complexes. The stochastically attainable goals are given implicitly, as the
complements of the start regions.

10.5 Duality in Design

We now understand better the topological information encoded in a graph’s strategy complex.
Earlier (Fig. 11) we saw that homotopy equivalence naturally favors precise actions over
imprecise actions. We also realized (page 35) that topology abstracts away from particular
trajectories to broad classes of motions. The source and dual complexes make this explicit.
Moreover, the state space V of a graph provides a good reference frame onto which homotopy
equivalences should map. One can compare different system capabilities of different graphs
with underlying state space V by comparing their source (and/or dual) complexes.

Returning to the design problem of Section 9, Fig. 21 now shows both the source and dual
complexes corresponding to Fig. 20. Moreover, the figure makes sense even if there are multiple
actions or design parameters at each state.

Recall the various semantics we have been attaching to complexes. Consider the first
column of complexes in Fig. 21. Previously we observed that this column corresponds to full
controllability since the strategy complex is homotopic to a circle. That statement still holds,
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Figure 21: A comparison of the source and dual complexes for the design problem of Fig. 20.

only now we may refer to the source complex, since we now know that the strategy and source
complexes have the same homotopy type. The dual complex in this case is the empty complex,
meaning that there are no potentially unattainable goals. That statement is consistent with
full controllability: all goals are stochastically attainable.

Remark: The reader may observe that this reasoning provides the basis for a purely
combinatorial proof of Theorem 11, made possible by Theorem 14 and the semantics of source
and dual complexes.

In some cases, one may not want full controllability. For instance, imagine that we are
designing the hallways and door controllers in a bank. Suppose, for simplicity, there are three
states: Outside, Lobby, and Vault. We might want to ensure that Outside and Lobby
are reachable from everywhere by everyone, but that Vault is reachable only by designated
people. This suggests a system whose capabilities switch between those given by the first and
third columns of complexes in Fig. 21, depending on the people walking in the hallways. We
could go back to Fig. 20 to select a particular implementation of these switchable capabilities
that also avoids passing by the Vault accidentally. For instance, we might use a switchable
deterministic action in the Lobby whose actual direction is under the control of the bank’s
security guards. Finally, we might also go back to Fig. 16 to fine-tune convergence times.
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11 Modularity

This section discusses combination and simplification of graphs.
First, some topology. The (topological) join X ∗ Y of two topological spaces X and Y is

the quotient space obtained from X × Y × [0, 1] by identifying each set {x} × Y × {0} to a
point and each set X × {y} × {1} to a point, for all x ∈ X and y ∈ Y [61]. Geometrically, one
may think of X ∗ Y as the union of all line segments joining points in X to points in Y [39].
For instance, the topological join of two finite disjoint edges is a tetrahedron.

In the case of simplicial complexes, the join assumes a simple combinatorial form:

Definition: Suppose Σ and Γ are two simplicial complexes with disjoint underlying vertex
sets. Their (simplicial) join is the simplicial complex defined as

Σ ∗ Γ =
{

σ
⋃

γ
∣∣∣ σ ∈ Σ and γ ∈ Γ

}
.

For instance, if Σ and Γ represent two disjoint line segments, say

Σ = {∅, {p1}, {p2}, {p1, p2}},
Γ = {∅, {q1}, {q2}, {q1, q2}},

then

Σ ∗ Γ = {∅, {p1}, {p2}, {q1}, {q2},
{p1, p2}, {q1, q2}, {p1, q1}, {p1, q2}, {p2, q1}, {p2, q2},
{p1, p2, q1}, {p1, p2, q2}, {p1, q1, q2}, {p2, q1, q2}, {p1, p2, q1, q2}},

which represents a tetrahedron.

Observe: Σ ∗ {∅} = {∅} ∗Σ = Σ and Σ ∗ ∅ = ∅ ∗Σ = ∅, for all simplicial complexes Σ.

Fact: Homotopy equivalence (�) commutes with the join operator (∗).

11.1 Graph Union

Suppose G1 = (V1,A1) and G2 = (V2,A2) are two stochastic graphs. (The state spaces V1 and
V2 are allowed to overlap.)

Consider the stochastic graph G = (V,A) representing the union of G1 and G2. It is defined
by V = V1

⋃
V2 and A = A1 
A2. The operator “
” means “disjoint union”, that is, we treat

actions in A1 and A2 as distinct even if they happen to have identical edge sets. (Any resulting
redundancy washes away under homotopy equivalence, as we saw in Section 5.5 and Fig. 11.)
We write G = G1

⋃
G2 for shorthand.

We wish to understand the relationship between ∆G, ∆G1 , and ∆G2 . Let us assume that V1

and V2 are both nonempty. Treating A1 and A2 as disjoint means ∆G1 and ∆G2 have disjoint
underlying vertex sets, so we can form their join. Observe that ∆G ⊆ ∆G1 ∗ ∆G2 , in fact,

∆G = {τ ∈ ∆G1 ∗ ∆G2 | τ is stochastically acyclic}.
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The next lemma describes some common cases in which there is equality of complexes.
Case (a) covers completely disjoint graphs, case (b) covers graphs that touch at a single state,
and case (c) covers graphs in which one graph is essentially feeding into the other.

Lemma 17 (Join Sufficiency) Suppose G = G1
⋃

G2, with notation as above. Assume that
V1 and V2 are both nonempty. In each of the following cases, ∆G = ∆G1 ∗ ∆G2:

(a) V1
⋂

V2 = ∅,
(b) V1

⋂
V2 contains a single state,

(c) G1 (or G2) has no actions with sources in V1
⋂

V2.

Proof. (a) Clear from the definitions. (Also, (a) follows from (c).)

(b) If σ
⋃

γ is not stochastically acyclic although σ ∈ ∆G1 and γ ∈ ∆G2 , then σ
⋃

γ must
induce a Markov chain (M, W ) whose support W is a recurrent class containing the common
state of V1 and V2. The transitions of M at that state are induced by a single action A, with
either A ∈ σ or A ∈ γ. In the first case, all of A’s targets lie in V1 and so σ alone could
generate (M, W ), contradicting the stochastic acyclicity of σ. Similarly for the second case.

(c) Suppose the sources of all of G1’s actions lie in V1 \ V2. If σ
⋃

γ is not stochastically
acyclic although σ ∈ ∆G1 and γ ∈ ∆G2 , then σ

⋃
γ must induce a Markov chain (M, W ) whose

support W is a recurrent class overlapping both V1 \ V2 and V2. Any action with source in V2

must be an action of γ and thus has no targets in V1 \ V2, contradicting the assumption that
W is a recurrent class of M . 	


11.2 Testing Acyclicity

Suppose G1 and G2 do not satisfy the conditions of Lemma 17. The following options for
computing ∆G exist:

1. One possibility is to compute ∆G rather than ∆G. Conceptually, ∆G is easier to compute
than ∆G. The two complexes have the same homotopy type (Theorem 14). Moreover,
∆G is more explicitly useful in characterizing system capabilities, as we saw in Section
10. Computing ∆G amounts to repeated backchaining (see Section 12).

2. Another possibility is to work with the definitions directly. For instance, in deciding
whether a potential simplex σ

⋃
γ really is stochastically acyclic, one may attempt to

solve System (1) (written out for σ
⋃

γ) using strictly positive action transition times
{δA}. The solution will diverge precisely when σ

⋃
γ can induce a Markov chain whose

support is a recurrent class.

3. Finally, a third possibility is to break the computations into simpler pieces using the
tools described next.

Lemma 18 (Combining Actions) Let G = (V,A) be a stochastic graph and σ ∈ ∆G.
Suppose there are actions A1, . . . , Ak ∈ A, all with the same source, such that σ

⋃ {Ai} ∈ ∆G

for each individual action Ai, i = 1, . . . , k. Then σ
⋃ {A1, . . . , Ak} ∈ ∆G.
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Proof. Let v be the source of the actions A1, . . . , Ak.

Any Markov chain (M, W ) induced by σ
⋃ {A1, . . . , Ak} whose support W is a recurrent

class must have transitions at v induced by some Ai. But then σ
⋃ {Ai} could induce the same

Markov chain. Contradiction. 	


Now suppose σ ∈ ∆G and A is an action of G. To avoid trivialities, assume A is not
a self-looping (non)deterministic action. Let vA be A’s source. One can decide whether
σ

⋃ {A} ∈ ∆G as follows:

• By Lemma 18, one may assume without loss of generality that vA �∈ Vσ (recall Vσ is the
set of all sources of actions in σ).

• By Lemma 17(c), if vA is not the target of some action of σ, or if no target of A lies in
Vσ, then σ

⋃ {A} ∈ ∆G. (This step is not necessary but provides a convenient filter.)

• Now consider the following system of equations:

qv = max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
max

B ∈ σ
B = {(v, uj)}

(
max

j
quj

)
, max

B ∈ σ
B = {(v, pjuj)}

⎛⎝∑
j

pjquj

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if v ∈ Vσ;

qv = 1, if v = vA; (5)

qv = 0, otherwise.

This system has a unique finite solution {qv}v∈V , since σ is stochastically acyclic. One
can compute the solution using iteration. For each v ∈ V , qv is the maximum probability
under all Markov chains induced by σ that the system, when started at state v, will reach
vA, the source of action A.

Consequently:

(i) If A is stochastic then σ
⋃ {A} ∈ ∆G if and only if qu < 1 for some target u of A.

(ii) If A is nondeterministic, then σ
⋃ {A} ∈ ∆G if and only if qu < 1 for all targets u

of A.

11.3 Simplification via Strongly Controllable Subspaces

For regular directed graphs, one defines an equivalence relation by saying that two states are
equivalent if each is reachable from the other. The resulting equivalence classes are called
strongly connected components. One may form a quotient graph by collapsing each strongly
connected component to a single point. Ignoring induced self-loops, the result is a directed
acyclic graph.

This section pursues such simplification for stochastic graphs. We will discover some
enrichments not present in regular directed graphs.
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Figure 22: States 1 and 3 are each certainly attainable from the other, but an excursion to
state 2 cannot be either excluded or forced by the system when leaving state 1. (An adversary
may have control over the precise path.)

An Equivalence Relation

The first subtlety concerns connectivity. It is not enough to define two states as equivalent if
each is reachable from the other. For instance, in Fig. 22, there exist strategies for attaining
state 3 from state 1 and vice-versa. The problem is that the strategy to attain 3 from 1 might
or might not pass through state 2. That would be fine if the graph contained strategies for
purposefully attaining state 2 from 1 and 3, but it does not.

We therefore need a stronger requirement than pairwise reachability. Here it is:

Definitions Suppose G = (V,A) is a stochastic graph.
Define a binary relation ↔ on V × V as follows:

• v ↔ w if G contains a subgraph H = (W,B) such that:

(a) v, w ∈ W , and

(b) ∆H � S|W |−2.

It is easy to see that ↔ defines an equivalence relation on V . We refer to an equivalence
class of ↔ as a strongly controllable subspace of G.

For each equivalence class W there is some subgraph H = (W,B) whose strategy complex
is homotopy equivalent to a sphere of dimension |W |−2. The proof of Theorem 11 ensures
that H contains strategies for attaining any state in W , without leaving W .

• If ∼ is any equivalence relation on V , let G/∼ be the quotient graph obtained
by collapsing states to their equivalence classes. Thus G/↔ collapses the strongly
controllable subspaces of G.

A special case: Let H = (W,B) be a subgraph of G with W �= ∅. Define the equivalence ∼
as follows: Each state of V \W is equivalent only to itself, while all states in W are equivalent.
This means W collapses to a point, call it �. We designate the resulting quotient graph by
G/W . G/W = (V ′,A′), with V ′ = V \W

⋃ {�} and A′ essentially identical to A except that
any states of W appearing as sources or targets in A have been remapped to � in A′.

Side issues: Distinct actions of G may effectively become the same action in G/∼.
Nonetheless, we treat them as distinct. In other words, there is a bijective correspondence
between A and A′. Once again, any redundancy will be washed away by homotopy equivalence
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once we pass to strategy complexes. The reader may also notice that for a given action, different
targets in G may become the same target in G/∼. This poses no real issue. Nondeterministic
actions are sets of edges, so the redundancy disappears automatically. For stochastic actions,
one can add up the probabilities of different edges with the same target to form a single
edge. Finally, some actions that are stochastically acyclic in G may very well become self-
looping (non)deterministic actions in G/∼. Such actions disappear when we pass to strategy
complexes.

Now imagine that H = (W,B) is a subgraph of G satisfying ∆H � S|W |−2 (W need not be
an equivalence class of G under ↔, but must certainly be a subset of such an equivalence class).
Then the system has full controllability within H, by Theorem 11. Consequently, H and G/W
are almost separate graphs that touch at a single state, as in Lemma 17(b). We might therefore
expect to see equality between complexes as in that lemma. This analogy is not quite correct;
the single common state is � in G/W , but it might be all of W in H. As a result, equality
becomes homotopy equivalence, as the following lemma and its proof demonstrate.

Lemma 19 (Factoring Controllable Subgraphs) Let G = (V,A) be a stochastic graph
and H = (W,B) a subgraph satisfying ∆H � S|W |−2, with W �= ∅. Then

∆G � ∆H ∗ ∆G/W .

Proof. By Theorem 14, we need merely prove ∆G � ∆H ∗ ∆G/W .
Let P = F(∆H ∗ ∆G/W ) and Q = F(∆G) be the associated face posets. Every p in P is a

nonempty simplex of ∆H ∗ ∆G/W , so we will simply write X
⋃

Y for elements of P .

Define f : P → Q by

f
(
X

⋃
Y

)
=

{
X

⋃
Y, if � �∈ Y ;

W
⋃

Y \ {�}, if � ∈ Y ;

with X ∈ ∆H and Y ∈ ∆G/W . Observe that X ⊆ W and Y ⊆ V \ W
⋃ {�}.

Recall: � is the state of G/W that represents W collapsed to a point.

[Comment: Observe the power of posets: f maps a singleton set {�} to all of W .]

The Quillen Fiber Lemma will give us the desired result, if we can satisfy these
preconditions:

(i) f is well-defined, meaning that f(X
⋃

Y ) really is a simplex of ∆G;

(ii) f is order-preserving;

(iii) the fibers f−1(Q≤q) are contractible.

Establishing these three conditions is a bit tedious. There are several cases. We will prove
the most interesting cases and leave the rest to the reader. We emphasize that one really must
prove (i); full controllability within H is needed to establish that f is well-defined.
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(i). We assume � ∈ Y . We leave to the reader the case in which � �∈ Y .

Let X ∈ ∆H and Y ∈ ∆G/W be given, with � ∈ Y . This means there exists a stochastically
acyclic set of actions τ ′ ∈ ∆G/W such that Vτ ′ = Y . Now let τ be the actions of G that generate
τ ′ (recall: the correspondence between actions in G and G/W is bijective). Since � ∈ Y , τ ′

includes an action A′ with source �. We may assume there is exactly one such action in τ ′.
Let w0 ∈ W be the source of the corresponding action A of τ . Since ∆H � S|W |−2, the proof
of Theorem 11 implies a stochastically acyclic set of actions σ ∈ ∆H such that Vσ = W \ {w0}.
It is not hard to see that σ

⋃
τ is stochastically acyclic since τ ′ is (Lemma 17(c) makes part of

the argument, establishing that σ
⋃

τ \ {A} is stochastically acyclic). Finally,

Vσ
⋃

τ = W \ {w0}
⋃

Y \ {�}
⋃

{w0} = W
⋃

Y \ {�},

meaning f(X
⋃

Y ) ∈ ∆G.

(ii). Easy.

(iii). Every q ∈ Q is a nonempty simplex of ∆G, so we will write V in place of q, with
V ⊂ V . Let V be given. We need to show that f−1(Q≤V ) is contractible.

We deal here with the case in which V
⋂

W = W . We leave to the reader the case in which
V

⋂
W is a proper subset of W .

To establish contractibility, we will show that f−1(Q≤V ) is the face poset of a cone with
apex �. Observe that f−1(Q≤V ) is indeed the face poset of a simplicial complex, since f is
order-preserving.

Let X
⋃

Y ∈ f−1(Q≤V ), with X ∈ ∆H and Y ∈ ∆G/W . Suppose � �∈ Y . We need to show
that X

⋃
Y

⋃ {�} is an element of f−1(Q≤V ). Observe:

f (X
⋃

Y ) = X
⋃

Y ⊆ V , since X
⋃

Y ∈ f−1(Q≤V );

f (X
⋃

Y
⋃ {�}) = W

⋃
Y ⊆ V , since W ⊆ V .

There remains to show that Y
⋃ {�} ∈ ∆G/W . Suppose that is false. Then there must be

some set of states Y ′ ⊆ Y , such that every proper subset of Y ′
⋃ {�} is a simplex of ∆G/W but

Y ′
⋃ {�} is not. By Lemma 15, no action of G/W moves off Y ′

⋃ {�}, which means no action
of G moves off Y ′

⋃
W . On the other hand, Y ′

⋃
W ⊆ Y

⋃
W ⊆ V , implying Y ′

⋃
W ∈ ∆G.

Now Lemma 15 reveals a contradiction.
The same argument shows that {�} is itself in f−1(Q≤V ). 	


Theorem 20 (Controllability Structure) Let G be a stochastic graph. Then

∆G � Sn−k−1 ∗ ∆G/↔,

where n is the size of G’s state space and k is the number of equivalence classes induced by ↔.

Proof. Use Lemma 19 repeatedly on the equivalence classes determined by ↔. Bear in
mind that Si ∗ Sj � Si+j+1 [6]. 	


Theorem 20 generalizes a result of Hultman’s for directed graphs [44]. For directed graphs,
it is not hard to see that ∆G/↔ is either the empty complex or homotopic to a point. So
for directed graphs, ∆G always looks like a sphere or a point, homotopically. For stochastic
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(in particular, nondeterministic) graphs, the domain is considerably richer (see Section 13 for
instance); ∆G/↔ may have arbitrary homotopy type (with n and k varying) within the range
of finite simplicial complexes.

We may think of Sn−k−1 as measuring controllability in the graph G, whereas ∆G/↔
captures the adversary’s ability to constrain the system. The full meaning of the factor ∆G/↔
is still a research question. We learned a lot in Section 10; the following example offers further
insight.

11.4 An Example (Air Travel During Thunderstorm Season)

p

p'

q'

q

Figure 23: This graph contains three types of actions: deterministic (green), stochastic (red),
and nondeterministic (blue). The graph might represent some poor passengers’ potential flight
paths during a day of thunderstorms.

Consider the graph of Fig. 23, which might represent possible air travel routes between
cities in the United States during some thunderstorm-infested July afternoon. The graph
includes deterministic, stochastic, and nondeterministic actions. Perhaps deterministic
actions represent flights that are certainly possible, stochastic actions represent flights whose
destinations are stochastically determined by emerging thunderstorms, and nondeterministic
actions represent sets of possible flights, to any one of which a hopeful passenger will be
assigned in an otherwise unpredictable fashion (nondeterminism is Murphy’s Law in action).

Of interest is the set of cities reachable from anywhere in the system and whether a
passenger might become trapped in an endless loop trying to reach some particular city.

The equivalence relation ↔ partitions the state space into five equivalence classes. Three
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p

p'

q'

q

Figure 24: The two nontrivial equivalence classes of the ↔ relation for the graph of Fig. 23,
along with the actions establishing full controllability within each equivalence class.

of these are the singleton sets {3}, {6}, and {8}. The two nontrivial equivalence classes are
{1, 2} and {4, 5, 7, 9, 10}, as shown in Fig. 24.

This means that passengers wishing to travel between cities 1 and 2 are in luck. They can go
directly from one city to the next. Passengers traveling between cities in the set {4, 5, 7, 9, 10}
are also fairly lucky. They will certainly get to their destinations, though the exact routing
may not always be certain in advance.

Unfortunately, there is a convention in city 4, towards which passengers from all over the
country are traveling. Many will not make it today, as we shall see.

The left panel of Fig. 25 shows the quotient graph G/↔ for the graph G in Fig. 23. Each
equivalence class is represented by one of its states. The source complex ∆G/↔ of this graph
appears in Fig. 26. The underlying vertex set of ∆G/↔ is the state space of G/↔, represented
by the cities {1, 3, 4, 6, 8}. (Keep in mind that, for instance, state 4 really represents the entire
equivalence class of cities {4, 5, 7, 9, 10}. Theorem 20 assures us that the capabilities of the
graph overall are captured by this reduced quotient representation.)

The complements of the maximal simplices of ∆G/↔ describe the most precisely attainable
goals, as implied by the results of Section 10. Since {1, 3, 4, 8} is a simplex in ∆G/↔, this
means city 6 is attainable from anywhere within the graph G/↔ and thus from anywhere in
the graph G. The right panel of Fig. 25 exhibits a strategy (in the quotient graph) for attaining
city 6. Too bad the convention is not happening in that city.

Particularly informative are the minimal nonfaces of ∆G/↔. The complements of these

sets are maximal simplices in ∆*
G/↔, meaning they are the maximal goals not certain to be

attainable from everywhere in the graph G/↔. ∆G/↔ contains two minimal nonfaces, namely
{4, 6} and {1, 3, 6, 8}. The complement of {1, 3, 6, 8} with respect to the the underlying vertex
set of ∆G/↔ is {4}. Consequently, city 4, the location of the convention, is not stochastically
attainable from everywhere in the system.
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Figure 25: The left panel shows the quotient graph G/↔ obtained by collapsing the strongly
controllable subspaces of the graph G in Fig. 23 to single states (not shown are self-looping
actions). The right panel shows a particular strategy for attaining state 6 in this quotient
graph.

3

1

8
4

6
solid tetrahedron

hollow tetrahedron

Figure 26: Source complex ∆G/↔ of the quotient graph G/↔ of Fig. 25.
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Figure 27: The graph (G/↔)|W appears in the left panel, with W = {1, 3, 6, 8} being a
minimal nonface of ∆G/↔ (see Fig. 26). An adversary can prevent attainment of state 4 by
selecting transitions as in the right panel. The system then has full controllability within W
relative to this adversarial choice.

The left panel of Fig. 27 shows the induced subgraph formed by flights available at the
equivalence classes of cities appearing in the minimal nonface {1, 3, 6, 8}. Sure enough,
adversarially, city 4 may become unreachable, as the right panel of Fig. 27 demonstrates.

Remark: The reader may have observed that in the right graph of Fig. 27, although city 4
becomes unreachable, the system can move to any city within the minimal nonface {1, 3, 6, 8}.
This is in fact generally true: if some set W is a nonempty minimal nonface of ∆H for some
graph H, then the system has full controllability within W relative to the assumption that it
does not exit from W . In other words, it might happen that the system leaves W , but if not,
for instance if an adversary makes nondeterministic choices to prevent motions out of W , then
the system can move to any state within W from any other state in W . This is consistent with
the observation we made in the proof of Theorem 16 that ∆G|W � S|W |−2 for any such W .

12 Algorithms

This section provides algorithms for backchaining from a goal set and for computing a graph’s
strongly controllable subspaces. With these tools one can then reduce a graph to its potentially
simpler quotient graph, as well as compute the source complex of the graph or of its quotient
graph. One then obtains a characterization of the underlying system’s capabilities, as discussed
in the previous sections. We have implemented all these algorithms. Sample runs produced
the figures in Section 11.4.

We do not provide an explicit algorithm for computing the strategy complex of a graph.
Our homotopy results show that one does not need the strategy complex per se in order

55



to understand a system’s capabilities. Moreover, the algorithm Backchain given next will
produce a strategy for attaining any particular goal set S, or determine that no strategy exists.
However, there certainly may exist strategies in a strategy complex other than those computed
by backchaining, as Fig. 5 suggests. These extra strategies may be useful practically as backup
strategies. The procedure outlined in Section 11.2, particularly starting with “Now suppose ...”
on page 48, allows one to construct such strategies individually or as part of the full strategy
complex.

Algorithm 1 Backchain(G,S)

Input: A stochastic graph G = (V,A) and a nonempty subset S of V .

Output: A (possibly empty) set {v1, . . . , vk} of states in V \ S and a corresponding
set {σ1, . . . , σk} of collections of actions in A, such that every action in σi

has source vi and moves off the set {vi, . . . , vk}, for i = 1, . . . , k.
Moreover, if v is any state in V \S for which G contains a stochastic strategy
for attaining S from v, then v will be one of the states vi returned.

Procedure:

1. Let W0 := S.

2. For i = 1, 2, . . . until done do:

(a) Let vi be any state in V \ Wi−1 such that some action with source vi

moves off V \ Wi−1. If no such vi exists, then done.

(b) Otherwise, let σi be all actions in A with source vi that move off V \Wi−1.

(c) Let Wi := Wi−1
⋃ {vi}.

3. Return {v1, . . . , vk} and {σ1, . . . , σk}, with k the maximum index for which vi

is defined. (If there is no such k, then return ∅ and ∅.)

Remarks: When Algorithm 1 is done, the collection of actions σ =
⋃k

i=1 σi is stochastically
acyclic, constituting a strategy for attaining V \ {v1, . . . , vk}. In particular, if Wk = V when
Step 2 is done, then σ is a complete stochastic strategy for attaining S on the state space V .
Conversely, if S is stochastically attainable in G, then Wk will be all of V , as the proof of
Theorem 16 shows.

Aside: Applying Algorithm 1 to the graph of Fig. 5 with S = {3} returns one or the other of
the two triangles in the strategy complex shown in the figure, rather than merely the central
edge. This is because Algorithm 1 grows the sets Wi one state at a time. Traditionally, one
might add multiple states at once. Doing so would then produce the central edge as the
backchained strategy in Fig. 5.
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Given a goal S, the next algorithm uses backchaining to iteratively winnow a graph’s state
space V down to the maximal subspace W within which S is stochastically attainable. This
procedure will be a useful step in determining a graph’s strongly controllable subspaces.

(The reader may wish to verify that the is correct, that there really is a single maximal
subspace W within which S is stochastically attainable.)

Algorithm 2 Strategy(G,S)

Input: A stochastic graph G = (V,A) and a nonempty subset S of V .

Output: A stochastically acyclic subgraph H = (W,B) of G such that S ⊆ W and
VB = W \ S, with W maximal among all such W .

Procedure:

1. Let {v1, . . . , vk}, {σ1, . . . , σk} be the results returned by Backchain(G,S).

2. Let W := {v1, . . . , vk}
⋃

S and σ :=
⋃k

i=1 σi.

3. If W = V , return the graph (W, σ).

4. Otherwise, recursively call Strategy((W, C), S), where C consists of all
actions in A whose sources and targets lie in W.

Given a stochastic graph G = (V,A), the next algorithm computes a regular directed
graph (V, E) such that (v, u) is an edge in E if and only if G contains a stochastic strategy for
attaining u from v, with v distinct from u. (See again the definitions on page 31.)

Algorithm 3 Reachable(G)

Input: A stochastic graph G = (V,A), with V �= ∅.
Output: A directed graph D = (V, E), with specifications as above.

Procedure:

1. For each u ∈ V , let Hu := (Wu,Bu) be the result returned by Strategy(G, {u}).

2. Let E :=
{
(v, u) ∈ V × V

∣∣∣ v ∈ Wu, v �= u
}
.

3. Return (V, E).
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The next algorithm computes the strongly controllable subspaces of G.

Algorithm 4 Subspaces(G)

Input: A stochastic graph G = (V,A), with V �= ∅.
Output: The set {W1, . . . , Wm} of equivalence classes of ↔ for G.

Procedure:

1. Let {V1, . . . , V�} be the strongly connected components of the directed graph
returned by Reachable(G). See [1] for an algorithm to compute these components.

2. If � = 1, return {V1}.
3. Otherwise, for each i = 1, . . . , �:

(a) Let Hi := (Vi, Ci), with Ci all actions of A whose sources and targets lie in Vi.

(b) Let Vi be the result of calling Subspaces(Hi) recursively.

Return
⋃�

i=1 Vi.

Remarks:

• Correctness. It is not difficult to prove that the previous algorithms correctly
compute output as specified.

• Runtime. The previous algorithms all run in almost-reasonable polynomial time. For
instance, the slowest, Subspaces(G), has time-complexity O(|V |5|A|), with G = (V,A).
No doubt, faster implementations exist.

• Quotient Graphs. Computing the quotient graph G/↔ from a graph G entails
calling Subspaces(G), then relabeling sources and targets of actions. Specifically, if
Subspaces(G) returns {W1, . . . , Wm}, then one relabels every state w in Wi by some
representative state for Wi, with i = 1, . . . , m.

• Source Complexes. Computing the source complex ∆G of a graph G is conceptually
straightforward: For every possible goal set S, one calls Backchain(G,S). To see this:

As we observed earlier, if the set of states {v1, . . . , vk} returned by Backchain(G,S)
is equal to V \ S, then S is a stochastically attainable goal. Always, {v1, . . . , vk} is a
simplex of ∆G. Conversely, any simplex of ∆G must show up as the start region of
some minimal complete stochastic strategy for attaining some goal S in G. By itself,
without other actions of G, that strategy necessarily looks like a backchained strategy,
as can be seen via recursive application of Lemma 15. Consequently, given other actions
of G, backchaining may produce a different strategy, but it will produce some complete
stochastic strategy for attaining S in G.

This näıve algorithm has running time exponential in the size of V . One can tinker with
the procedure to make it slightly more efficient, but the exponential nature is likely to
be fundamental, as the first hardness result of Section 14 indicates.
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13 Realizability

We have previously indicated that finite simplicial complexes and stochastic graphs are
essentially equivalent objects from a topological perspective. In fact, this equivalence depends
on nondeterminism not stochasticity. The underlying reason is that finite simplicial complexes
are purely combinatorial and thus are equivalent to finite posets [6, 75]. Nondeterministic
graphs alone, without stochastic actions, are able to capture all finite posets.

This section makes precise these comments with two realizability theorems. The first
theorem says that for any finite simplicial complex Σ, there is some strategy complex isomorphic
to the first barycentric subdivision of Σ. The second theorem says that Σ may actually be
realized exactly as a source complex of some graph. In both cases, the generating graphs are
nondeterministic.

Reminder: sd(Σ) means the first barycentric subdivision of Σ (Section 5.4).

Theorem 21 (Realization by Strategy Complexes) Let Σ be a finite simplicial complex.
There exists a nondeterministic graph G such that sd(Σ) ∼= ∆G.

Proof. If Σ = ∅, then sd(Σ) = ∅, so we may let G = (∅, ∅).
Otherwise, define G = (V,A) as follows: V consists of all vertices in the complex sd(Σ)

along with one new vertex, ⊥. A contains exactly one nondeterministic action Av at every
v ∈ V other than at ⊥. Av = {(v, u) | u ∈ V and {v, u} is not a simplex of sd(Σ)}. In other
words, Av has transitions to all vertices that are not adjacent or equal to v in the barycentric
subdivision of Σ. Observe that every action Av contains at least one edge, namely a transition
from v to ⊥, so this definition is well-formed. Moreover, no action contains a self-loop.

The map v �→ Av is a bijective correspondence between the vertices of sd(Σ) and those
of ∆G. In order to establish that sd(Σ) ∼= ∆G, we need to show that this correspondence
preserves simplices. Definitionally, both sd(Σ) and ∆G contain the empty simplex.

(Aside: If Σ = {∅}, then G = ({⊥}, ∅) and ∆G = {∅} = sd(Σ).)

(a) Suppose ∅ �= σ ∈ sd(Σ). σ = {v1, . . . , vk}, with vi ∈ V \ {⊥}. Let Ai be the action of
G defined at vi, for i = 1, . . . , k. No vi can appear as the target of any Aj , since {vi, vj} is a
simplex of sd(Σ). That means {A1, . . . , Ak} is a simplex of ∆G.

(b) Suppose ∅ �= τ ∈ ∆G. τ = {A1, . . . , Ak}, with each Ai ∈ A. Let vi be the source of
Ai, for i = 1, . . . , k. Each vi is the barycenter of some nonempty simplex σi ∈ Σ.

Consider the set {vi, vj} formed by any two distinct such vertices. This set must be a
simplex of sd(Σ) as otherwise {Ai, Aj} could generate a cycle in G. Consequently, either σi is
a proper face of σj or vice-versa. So, without loss of generality, ∅ ⊂ σ1 ⊂ σ2 ⊂ · · · ⊂ σk, all
inclusions being proper. In turn, that means {v1, . . . , vk} is a simplex of sd(Σ). 	


Theorem 22 (Realization as Source Complexes) Let Σ be a finite simplicial complex.
There exists a nondeterministic graph G such that Σ = ∆G.
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Proof. If Σ = ∅, let G = (∅, ∅). Then ∆G = ∅.
Otherwise, let V be the vertices of Σ. If Σ is the complex of the full simplex on V , enlarge

V by one new state, ⊥. Let Σ be the set of maximal simplices of Σ. Observe: By construction
of V , V �∈ Σ.

Construct G = (V,A) as follows: For every X ∈ Σ and every v ∈ X, define the
nondeterministic action Av,X = {(v, u) | u ∈ V \ X }. Each such action contains at least one
edge, since X cannot be all of V . Let A consist of all such actions.

(Aside: If Σ = {∅}, then G = ({⊥}, ∅) and ∆G = {∅}.)
(a) Suppose ∅ �= X ∈ Σ. We can assume without loss of generality that X ∈ Σ. Consider

the set of actions σ = {Av,X | v ∈ X }. No source of an action in σ is the target of an action
in σ, so σ ∈ ∆G. Thus X = Vσ ∈ ∆G.

(b) Suppose ∅ �= X ∈ ∆G. Let σ ∈ ∆G such that Vσ = X. By Lemma 15, σ contains an
action that moves off X. The action must be of the form Av,Y , for some Y ∈ Σ, with v ∈ Y .
By the definition of “moves off”, v ∈ X and all targets of Av,Y lie outside X. By construction,
the targets of Av,Y are all the states of V \ Y . That means X ⊆ Y . So X is a simplex of Σ,
since Y is.

Both Σ and ∆G contain the empty simplex. 	


Remark: The underlying vertex sets of Σ and ∆G may differ slightly, but the simplices in
the two complexes are identical.

14 Hardness

This section presents some simple hardness results. The first result indicates that the
exponential computation of ∆G described in Section 12 is fundamental, assuming NP and
P are different complexity classes. The other two results suggest that homotopy equivalence of
strategy complexes is either a stronger topological condition than one needs for understanding
system capabilities or that homotopy equivalence encodes some interesting properties about
uncertain systems beyond those one usually asks at the fixed graph level. It remains a research
question to know which of these perspectives is correct.

14.1 The Difficulty of Determining a System’s Precision

The first result has practical implications. Given an uncertain system, it may be very difficult
to determine just how precise the system can be.

Lemma 23 (Precision is Hard) Let G = (V,A) be a stochastic graph. Determining the size
of the smallest stochastically attainable goal is NP -complete.
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Proof. The proof is by a reduction from Independent Set. The underlying ideas are
related to the realizability ideas from Section 13.

We define the following two problems:

IndepSet: Given an undirected graph (V, E) and an integer �, is there a set I ⊆ V
of size � such that no two states in I constitute an edge in E?

Precision: Given a stochastic graph G = (V,A) and an integer k, is there some set
S ⊆ V of size k such that G contains a complete stochastic strategy for
attaining S?

IndepSet is a known NP -complete problem [49, 66].

I. Precision lies in NP :

Given S, one can verify in polynomial time that S has size k and that G contains a complete
stochastic strategy for attaining S, using Algorithm 1.

II. Precision is NP -hard:

Suppose (V, E) is an undirected graph and � an integer. Let n = |V |.
Define a nondeterministic graph G = (V

⋃ {⊥},A) as follows: ⊥ is a new state. For every
v ∈ V , A contains a nondeterministic action Av = {(v, u) | u =⊥ or (v, u) is an edge in E }.
So Av transitions to every state adjacent to v in the original undirected graph, as well as to ⊥
(ensuring Av is well-formed).

(a) Suppose I is an independent set of size � in (V, E).

Consider the set of actions σ = {Ai | i ∈ I }. No source of an action in σ is the target of
an action in σ, by definition of I. So σ ∈ ∆G. That means G contains a complete strategy for
attaining {⊥}⋃

V \ I, which is a set of size n + 1 − �.

(b) Suppose G contains a complete strategy for attaining set S of size k.

S necessarily contains ⊥. There is some σ ∈ ∆G such that Vσ = V \S and |Vσ| = n+1−k.
Vσ is an independent set in (V, E). To see this, suppose otherwise. Then σ must contain
actions Av and Au such that (v, u) is an edge in E. That would mean σ could generate a cycle
in G, a contradiction.

To summarize: (V, E) contains an independent set of size � if and only if G contains a
stochastically attainable goal of size k with k + � = n + 1. One may construct G from (V, E)
in polynomial time. Thus Precision is NP -hard. 	


14.2 Small Realization is Uncomputable

There are classic deep results telling us it is algorithmically impossible to recognize the
homeomorphism or homotopy type of even a finite general simplicial complex [76]. These
results have their roots in work on the algorithmic impossibility of deciding whether a word in
a finitely presented group is trivial [63]. One particular implication is that it is algorithmically
uncomputable to decide whether a finite simplicial complex is contractible (this follows from
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[64]). We present two consequences for nondeterministic (and thus stochastic) graphs.

The following lemma says: Finding the smallest graph whose strategy complex is homotopic
to a given complex is an uncomputable problem. Compare this with the realizability results
of Section 13.

Lemma 24 (Compact Realization) The following question is undecidable:

Given a finite simplicial complex Σ and a nonnegative integer m,
is there a stochastic graph G with m actions such that ∆G � Σ?

Proof. Observe: If G is a stochastic graph containing a single action A, then either
∆G = {∅} or ∆G = {∅, {A}}, depending on whether A contains a (non)deterministic self-
loop or not, respectively.

We now reduce from the uncomputability of deciding contractibility:
Suppose Σ is a finite simplicial complex. We can check whether it is trivial (void or empty)

easily. Assuming it is not trivial, we ask whether there is a stochastic graph G containing a
single action such that ∆G � Σ. The answer is “yes” if and only if Σ is contractible. 	


14.3 Recognizing Repercussions is Uncomputable

Suppose we are given a stochastic graph G = (V,A) that somehow does not satisfy some
criterion we desire. We wish to understand whether adding a particular new action A, with
source and targets in V , will satisfy our criterion. We can certainly compute the strategy or
source complexes of the resulting graph, to see whether any larger start regions or more precise
goals have been created. What we cannot do, in general, is decide whether the homotopy type
of the strategy (or source) complex has changed, as the following lemma indicates.

Lemma 25 (Detecting Change) The following question is undecidable:

Given a stochastic graph and a new action, does the graph’s strategy
complex change homotopy type when one adds the action to the graph?

Proof. Suppose Σ is a finite simplicial complex. Again, we can check whether it is trivial
(void or empty) easily. Assuming it is not trivial, we construct a graph G much as in the
proof of Theorem 22, except that we always add two new states, ⊥ and �. So the graph looks
like G = (V,A), with V the union of {⊥,�} and the vertices of Σ. The set of actions A is
computed as in the proof of Theorem 22. Observe that there are no actions at either ⊥ or �.
As before, one obtains exact equality: Σ = ∆G.

Now consider adding to G a new action A, representing a deterministic transition from �
to ⊥. Call the resulting graph Ĝ. Then ∆

Ĝ
is a cone with apex A, hence contractible.

In summary:
• Σ = ∆G � ∆G (by proof of Theorem 22 and by Theorem 14).

• ∆G � ∆
Ĝ

if and only if ∆G is contractible (by construction).

So Σ is contractible if and only if ∆G � ∆
Ĝ
.

Recognizing contractibility is undecidable. 	
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15 Topological Thinking

This section discusses some scenarios in which topological thinking reveals the essence of a
problem and its solution.

15.1 Topology Precompiles an Existence Argument

Suppose G = (V,A) is a stochastic graph with associated nonnegative action transition times
{δA}A∈A. Let S be a desired stop set (goal states) within V and let T be some nonnegative
time.

Suppose for every u in V \S, someone has produced a strategy σu by which the system will
converge to S when started at u, with worst-case expected-convergence time for u no greater
than T . (In other words, 0 ≤ tu ≤ T in the solution of System (1) on p. 22, written out for
σu. We make no assertions concerning σu’s times tv for states v other than u.)

We ask the question: Is there a complete stochastic strategy σ that converges to S from
all states of V with all worst-case expected-convergence times no greater than T?

Intuitively, we certainly expect the answer to be “yes”. After all, one can imagine a meta-
strategy that determines the initial state u, then executes strategy σu. However, this dispatch-
based strategy is not a strategy in our sense. Our strategies have the flavor of feedback-based
control laws, that is, they are mappings from states to (sets of) actions. The question therefore
is whether we can flatten the dispatch-based strategy to be a true strategy. Observe the
difficulties:

Let v and u be distinct states in V \ S.

Issue 1: It could very well be that σu contains no actions at state v.

Issue 2: Even if σu contains one or more actions at state v, it could be that
tv > T when we solve System (1) written out for σu.

Issue 3: The two strategies σu and σv may contain inconsistent actions, meaning
that σu

⋃
σv might not be stochastically acyclic. For instance, one

strategy might move left through a hallway and the other right.

One can make a backchaining argument that some strategy σ exists for attaining S from
everywhere in V . Arguing that among all such strategies there is at least one for which all
worst-case expected convergence times are bounded by T is possible, but tedious.
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There is a short topological argument:

• Write V = [n] and S = {n}, without loss of generality.

• Consider the loopback graph G←n = (V,A′), as in the proof of Theorem 1.
Associate transition time 0 to every loopback action.

• By Lemma 10, the affine cover
⋃

A∈A′ U
+
A contains all sets

{x ∈ Rn | xi > xn + T } and all sets {x ∈ Rn | xn > xj }.
Thus it contains all sets {x ∈ Rn | xi > xj + T }, with i, j in V .

Using Theorem 8 and the structure of ∂CT+ε,

∆T
G←n

�
⋃

A∈A′
U+

A

⋂
∂CT+ε � Sn−2.

• By the remark at the end of Section 8 (p. 35), ∆T
G contains a complete

stochastic strategy for attaining S. In particular, all worst-case expected
convergence times of this strategy are bounded by T , as desired.

The intuitive summary:

• Strategy existence depends on cover connectivity in Rn.

• Adding strategies, even partial or pairwise inconsistent
strategies, can only improve cover connectivity.

Topology has precompiled an existence argument: Bellman’s Principle of Optimality shows
up as the union of open sets.

15.2 Topological Analysis of Adversity

In looking at examples, the reader may have begun to wonder where adversity sits: In the
stochastic nature of actions or in the nondeterministic nature of actions? Topology helps us
understand an answer to that question.

The definition of moves off on page 41 makes explicit a difference between stochastic and
nondeterministic actions: A stochastic action is almost the same as a set of deterministic
actions. The following definition and lemma make this idea precise:

Definition: If G = (V,A) is a stochastic graph, let det(G) = (V, det(A)) designate the
nondeterministic graph in which every stochastic action of G has been replaced by a set of
deterministic actions. Specifically, let us define det(A) as follows:

• det(A) contains every deterministic or nondeterministic action of A.

• For every stochastic action A ∈ A of the form A = {(v, p1u1), . . . , (v, pkuk)}, det(A)
contains k deterministic actions, each consisting of a single edge (v, ui), with i = 1, . . . , k.
(As usual, we permit redundancies, that is, distinct actions with identical edge sets.)
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Lemma 26 (Stochastic Determinism) Let G = (V,A) be a stochastic graph. Then

∆G � ∆det(G) and ∆G = ∆det(G).

Proof. The first assertion follows from the second, by Theorem 14.
One can establish the second assertion by using Algorithm 1 and Lemma 15. 	


Conclusion: From the perspective of homotopy type or from the perspective of
understanding a system’s stochastically attainable goals, one may study det(G) in place of
G. Fig. 28 provides an example, demonstrating homotopy equivalence of ∆G and ∆det(G). Of
course, convergence times in the two graphs may very well be different, so one must be careful
not to oversimplify.

Figure 28: The top row shows a pure stochastic graph and its strategy complex. The bottom
row shows the deterministic rendition of this graph plus the resulting strategy complex. Both
complexes are homotopic to S1.

Pursuing this further, we can ask where true adversity resides. The realizability theorems
of Section 13 all used nondeterministic graphs, as did the NP -completeness result of Lemma
23. Suppose G is a pure stochastic graph, in the sense that it contains only deterministic and
stochastic actions but no multi-edged nondeterministic actions. Then Lemma 26 and Theorem
20 allow us to conclude that ∆G is homotopic either to a sphere or to a point. Pure stochastic
graphs simply cannot attain the richness of strategy complexes that nondeterministic graphs
attain. Said differently, true adversity comes from nondeterministic adversaries. Stochastic
adversaries can slow a system down, but do not have the ability to switch between limit cycles
in the way nondeterministic adversaries sometimes can (limit cycles are the minimal nonfaces
of ∆G; see also the remark on page 55).

65



Some further remarks:

Suppose again that G is a pure stochastic graph. When ∆G and ∆det(G) are homotopic to
a sphere, that sphere has dimension n − k − 1, where n is the number of states in G and k
is the number of strongly connected components of det(G). In particular, if det(G) can be
written as the disjoint union of its strongly connected components, then ∆G and ∆det(G) will
be homotopic to a sphere; otherwise, they will be contractible, as follows from [44] or Theorem
20. Observe that k is no greater than the number of strongly controllable subspaces of G and
in fact can be less, but must be the same when ∆G and ∆det(G) are homotopic to a sphere.

When passing to quotient graphs, let us discard any actions that become cyclic
(deterministically self-looping). Then the graph det(G)/↔ is a directed acyclic graph. All
the actions of this graph together are acyclic and thus the complex ∆det(G)/↔ consists of a
single simplex (all acyclic actions of det(G)/↔) and its faces. It is empty precisely when det(G)
can be written as the disjoint union of its strongly connected components.

The graph G/↔ is similar, yet slightly different. As we observed already, the state space
of G/↔ may be larger than that of det(G)/↔. With regard to strategies, as was the case
for ∆det(G)/↔, ∆G/↔ consists of a single simplex (all acyclic actions, now of G/↔) and its
faces. A difference lies in certainty. G/↔ represents a collection of Markov chains, with all
states either transient or absorbing. Whereas in det(G)/↔ the system may be able to move
purposefully from some state to some other state, in G/↔ it may only be able to do so with
some probability; the adversary may have some stochastic choices by which to influence the
outcome of motions. This is a simple Markov Decision Process [67].

15.3 Topological Thinking in Partially Observable Spaces

This section shows by example how the topological characterization of task solvability may
help one decide whether a task has a guaranteed solution. Throughout this section all graphs
are nondeterministic.

Implicitly in the analyses thus far, the system has always known its current state. If in fact
the system’s sensing function is imperfect, then one may redefine the system’s state space so
as to obtain perfect sensing in the redefined state space. The construction is straightforward
[5, 54], albeit often with added complexity.

The nondeterministic version of this construction leads to a derived nondeterministic graph,
sometimes called a knowledge space [23, 25]. A sensorless version of knowledge space appeared
as the search space for the part orienter of [29].

Intuitively, the knowledge space of a graph is a new graph whose states are sets of
potential robot locations consistent with the robot’s sensing and action history at runtime.
For completeness, we give a general definition here.

Definitions Suppose G = (V,A) is a nondeterministic graph.

• For the purposes of the next few definitions, we assume that every action in A is labeled
with a name, which we refer to notationally as A. Names of actions at a given state are
unique. However, different actions at different states might have the same name. (Think
of a global control with possibly different effects at different states.)

We write Av to mean the action in A whose name is A and whose source is v, whenever
such an action exists.
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• A sensor on V is a covering Ξ of V by nonempty subsets of V , each of which is called a
sensory interpretation set. Sensory interpretation sets may overlap.

Intuition: Whenever the system is at some state v, a sensor returns some value whose
interpretation is a set I ∈ Ξ such that v ∈ I. (We could model the sensor via some
intermediate sensory space, but we will simply map directly to interpretations of the
sensor. More general formulations of sensing appear, for instance, in [5, 54].) Sensing in
our case is nondeterministic, meaning that the sensor could return any I ∈ Ξ with v ∈ I.

Observe that Ξ = {V } is equivalent to no sensing.

• Suppose X ⊆ V and A is an action name. The forward projection of X under A, written
FA(X), is the set of all possible locations the system might move to after executing some
action named A, given that the system starts in X. In order for this definition to be
sensible, the name A must actually mean something at every state in X. Otherwise, by
convention, FA(X) is not defined. Formally, if Av exists for every v ∈ X, then

FA(X) = {u ∈ V | (v, u) ∈ Av for some v ∈ X }.

• Once the system moves from X under A, it can sense again. The sensor may return any
sensory interpretation set I ∈ Ξ for which FA(X)

⋂
I is not empty. If the system knows

it is in set X before moving under A, then after moving and sensing a particular I, the
system knows it is somewhere in the set FA(X)

⋂
I.

• Given G and Ξ as above, define a new nondeterministic graph K = (V +,A+) as follows:

– V + consists of all nonempty subsets of V . (Depending on Ξ and A, one may not
really need to construct all of V +, of course.)

– For every X ∈ V +, and for every action name A such that Av exists for all v ∈ X,
A+ contains a nondeterministic action with source X given by:{

(X, Y )
∣∣∣ ∅ �= Y = FA(X)

⋂
I for some I ∈ Ξ

}
.

K is the knowledge space associated with G and Ξ.

Remark: One can define stochastic analogues of K for pure stochastic graphs G. This leads
to the so-called belief states, of great interest in Partially Observable Markov Decision Processes
[54]. Some caution is advised, since problems quickly become intractable [67, 58].

15.3.1 Inferring Task Unsolvability From Duality

Recall Theorem 16. Failure of the theorem’s contractibility condition is evidence of a potentially
inescapable cycle, appearing as a minimal nonface of ∆G, indicating that the graph contains
no complete guaranteed strategy for attaining set S. We saw an example in Fig. 27.

Now consider the graph of Fig. 29, which might model a robot moving in a building. There
are two corridors (states 1 and 2). In any one corridor the robot can move Right or Left.
Atriums connect the corridors at either ends. The task is to reach one particular atrium (state
3). Entry into the corridors from the other atrium (state 4) is imprecise. The gray triangle

67



4

3
Right Left

21 

RightLeft

Imperfect SensorState Graph

Enter

{4}

Right Left

Inescapable Cycle

{1,2}

{3}

Enter

Figure 29: A graph, an imperfect sensor, and a potentially inescapable cycle between knowledge
states {4} and {1, 2} (indicated by the solid arrows in the right panel).
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(imperfect sensing)
Induced Subcomplex

Figure 30: With perfect sensing, the strategy complex of the state graph of Fig. 29 consists of
a solid triangle joined to an edge of a solid tetrahedron. With sensing ambiguity at states 1
and 2, this strategy complex collapses, inducing a non-contractible subcomplex of strategies
in knowledge space that signals a potentially inescapable cycle.
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in the strategy complex of Fig. 30 constitutes a strategy for accomplishing this task, assuming
perfect sensing. The strategy is to Enter from state 4, move Right from 1, Left from 2.

Now imagine a robot controller unable to distinguish the two corridors (states 1 and 2)
based on sensing alone. The task no longer has a guaranteed solution. One could see this in
a variety of ways, for instance, by explicitly constructing the robot’s knowledge space, part
of which is shown in the right panel of Fig. 29. Let us take a related but more topological
perspective.

One does not need to construct the knowledge space directly. Instead, one can reason about
strategies. Consider the strategy complex of the original graph (left panel, Fig. 30). As we
will see, this complex induces a non-contractible subcomplex of strategies in knowledge space
(right panel, Fig. 30) that violates the contractibility condition of Theorem 16.

Let us focus on the actions at two key knowledge states, namely {4}, representing certainty
that the system is at state 4, and {1, 2}, representing uncertainty as to whether the system
is at state 1 or 2. The tetrahedron of the original complex describes the strategies possible
with perfect sensing at the graph states 1 and 2. The tetrahedron collapses to an edge under
sensing ambiguity. This edge represents the two actions, Right and Left, possible at state
{1, 2} in knowledge space. In the original complex, only a portion of the tetrahedron joins
with the action Enter; action Right at state 2 and action Left at state 1 do not join with
Enter. In the knowledge space complex, the edge {Right,Left} consequently cannot join
with the action Enter.

We have thus exhibited a non-contractible complex describing the strategies available at
a subset of knowledge space, with that subset lying in the complement of the goal (state 3).
This means, no matter what the surrounding knowledge space might look like, there can exist
no complete guaranteed strategy for attaining state 3 in the presence of control uncertainty at
state 4 and sensing confusion between states 1 and 2.

15.3.2 Hypothesis-Testing and Sphere Suspension

Definition: A suspension of a complex is another complex formed by joining each simplex
of the given complex with each of two new vertices [61, 39]. For instance, the complex in Fig. 4
is a suspension of the complex in Fig. 2. The key property relevant to us currently is that
the suspension of a sphere of any dimension is another sphere, of one higher dimension. For
instance, (a globe of) the Earth is a suspension of the Equator by the North and South Poles.

Fig. 31 shows a variant of the example of Fig. 29. Once again there is some control
uncertainty, once again the sensor cannot distinguish certain corridors. The system cannot
move reliably to state 3 using pure feedback control (that is, using sensing alone, without
history). For some sensor values, neither of the actions Right or Left will make progress
toward the goal 3 at all graph states consistent with the sensor value.

Fortunately, this time the confusable corridors lie in different “wings” of the building.
The sensor stratifies the graph into two subgraphs, both containing the goal 3. Within each
subgraph the sensor is effectively perfect and each subgraph contains a strategy guaranteed to
attain the goal from anywhere within that subgraph using sensor-indexable controls that are
well-defined across subgraphs.

Whenever a sensor stratifies a graph into subgraphs in this manner, there exists a
hypothesis-testing strategy for attaining the goal from anywhere in the overall graph.
Hypothesis-testing means: The system assumes it is in one of the subgraphs; it commands
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Figure 31: An imperfect sensor stratifies a graph into two subgraphs (the “a wing” and the “b
wing”), over each of which sensing is effectively perfect.

actions and interprets sensor readings as if it really were in that subgraph, but also verifies
consistency between predicted motions and observed sensor readings. If an inconsistency
occurs, the hypothesis of being in that subgraph has been falsified and the system moves
on to another hypothesis. Intuitively, this strategy eventually converges at the goal.

Hypothesis-testing is a strategy in knowledge space, but one does not need to construct
knowledge space. In general, knowledge space may contain additional, possibly shorter,
strategies. Fortuitously, for the example of Fig. 31, hypothesis-testing is effectively the only
strategy.

There is a short topological argument that hypothesis-testing converges:

Hypothesis-testing amounts to repeated sphere suspension.

Further details: The graph Hi describing motions under the ith hypothesis is equivalent to
the subgraph Gi being hypothesized, except that some actions may move nondeterministically
to a new state ⊥i, signaling falsification of the hypothesis. We also add an “action” from ⊥i

to the goal, as explained below. Without loss of generality, every action of Gi, and thus Hi,
contains a nondeterministic transition to the goal. (Adding these transitions does not affect
the existence of strategies for attaining the goal, but focuses on the topologically significant
simplices in the complexes.)

The relevant loopback complex ΓHi of Hi is then a suspension, formed by joining the
relevant loopback complex ΓGi of Gi with the loopback action goal → ⊥i and the action
⊥i → goal. We now use Theorem 1, once in each direction: Since Gi contains a strategy
guaranteed to attain the goal from any state in Gi, ΓGi is homotopic to a sphere, of the correct
dimension. Since ΓHi is a suspension of ΓGi , it too is a sphere, again of the correct dimension,
proving that hypothesis-testing converges.

What is the mysterious action ⊥i → goal ? It is the inductive-hypothesis that there
exists a strategy for attaining the goal once the ith graph-hypothesis has been falsified! (The
base case is similar, except that there is no need for a state ⊥i. The final graph-hypothesis is
certain.)
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Remarks: (1) One can make a very similar argument directly at the graph level, further
underscoring the parallel between spheres and task solvability. That parallel shows as well
that backchaining in nondeterministic graphs is much like repeated sphere suspension. (2)
Hypothesis-testing is related to randomization [23, 24, 25].

16 Conclusions

16.1 Summary

The controllability structure Theorem 20 on page 51 is the most concise description of system
capabilities we have currently. Implicitly, this theorem contains as special cases the full
controllability Theorem 11 and the goal attainability Theorem 1. These three theorems
characterize controllability of uncertain systems by the existence of spheres of a specific
dimension. Theorem 16 provides a dual statement via contractibility of subcomplexes. That
theorem helps one understand an adversary’s capabilities in terms of forced limit cycles.

From a practical perspective, Theorem 14 on page 42 is the most useful. It suggests that
when considering homotopy equivalences, one should take the homotopy simplification of a
strategy complex down to the state space, and not further. That rendition provides a natural
mechanism by which to compare the capabilities of different systems with a common state
space, as illustrated by the design example of Sections 9 and 10.

16.2 Other Results

We have omitted many interesting results from this paper. The Contributions section (§1.6)
mentioned several. For instance, the number of nonempty simplices in the loopback complex
associated with a particular goal is even if the goal is stochastically attainable and odd if it
is not. This is a consequence of the Euler characteristic being even for spheres and odd for
contractible spaces.

There also exist generalizations of the results presented, by reduction to them. For instance,
perhaps one is interested in whether a goal is attainable from some initial subset of the state
space rather than from the entire state space. One can reduce this problem to a full attainability
question by modifying the graph slightly. In the nondeterministic case this is easy to see: one
merely adds a nondeterministic hyperjump at each state, that jumps to every state in the initial
region. These hyperjumps will never be needed by an actual strategy in the original system
but serve as a convenient reduction tool.

Similarly, perhaps one is merely interested in reaching a goal with some minimum
probability, but not necessarily for certain. Again, one can add hyperjumps at some states,
assigning strictly positive transition times to these hyperjumps and zero transition times to all
other actions. One thus reduces the original problem to the problem of attaining a goal with
certainty, but now with a bound on the worst-case expected convergence times.

16.3 Open Questions

Our original goal was to develop a topological language for describing system capabilities. We
have come a long way. Strategy and source complexes abstract away the detailed connectivity
between states in a graph while retaining information about overall goal attainability.
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Consequently, one can assign topological spaces to graphs, much like labels, that succinctly
summarize the graphs’ capabilities.

One wonders whether this new language holds more expressive power than we have used
thus far. Our key theorems are not yet completely “coordinate-free”: The number of states
shows up in the dimensionality of the spheres that assure controllability. Likewise, we find
ourselves working with source complexes on specific state spaces, rather than more abstractly.

Hidden inside this observation is another: Our contractibility results tend to have the flavor
of collapsibility (see Section 5.2). This begs the question whether the more general (and more
difficult) form of contractibility is relevant, and if so, what it is telling us.

Related to this general interpretation of contractibility is the question of whether our results
generalize to continuous state spaces. As we observed in the Introduction, from a practical
perspective one tends to work in discrete spaces. Nonetheless, the question is interesting
intellectually. For instance, imagine a sequence of finite discrete graphs that approximate ever
more finely a continuous space. An amusing issue here is that finite-dimensional spheres are
homotopically different from points, whereas the infinite-dimensional sphere is homotopically
equivalent to a point.
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List of Primary Symbols

Symbol Meaning Page Reference

G, H nondeterministic or stochastic graph 11, 21
V set of all states in a graph (state space) 11, 21
W some set of states in a graph 12, 21
A, B nondeterministic or stochastic action in a graph 11, 20
A,B, C collection of nondeterministic or stochastic actions 11, 21
HB subgraph of G induced by actions B 12, 23
G|W subgraph of G induced by actions with sources in W 41
det(·) replacement of stochastic actions by sets of deterministic actions 64

Rn n-dimensional Euclidean space 18
S1; Sn−2 circle; sphere of dimension n−2 15; 16
Σ, Γ simplicial complex 12, 17
σ, τ, γ simplex in a simplicial complex 12, 46
N (·) nerve of a collection of sets 19
F(·) face poset of a simplicial complex 19
sd(·) barycentric subdivision of a simplicial complex 19

∆G strategy complex of a graph 12, 24
∆G source complex of a graph 42

∆*
G dual complex of a graph 44

tmax(·) maximal worst-case expected convergence time of a strategy 24
∆T

G subcomplex of ∆G containing time-bounded strategies 24
VA, VB, Vσ, Vτ start region of a collection of actions 22
UA, UB, U+

A , U+
B covering sets: open subsets of Rn associated with actions A and B 25

[n] shorthand for {1, . . . , n} 16
s desired stop state in a graph (e.g., a task goal) 16
S set of desired stop states in a graph (e.g., alternative task goals) 30
G←s loopback graph 16
∆G←s loopback complex 16

(M, W ) Markov chain M with support W 22

∗ join operator (for spaces and simplicial complexes) 46
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↔ strongly controllable (equivalence relation on states) 49
G/↔ quotient graph under strong controllability 49, 54
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57

4 Subspaces(G) Constructs the strongly controllable subspaces of G. 58

– – Description of an algorithm for computing quotient graphs. 58

– – Description of an algorithm for computing source complexes. 58

– – An approach for computing strategy complexes. 47

List of Key Definitions

Term Page Reference

contractible 18
collapsible 18
cone 18

acyclic 12
stochastically acyclic 23
(nondeterministic) strategy 12
(stochastic) strategy 24
complete guaranteed strategy 16
complete stochastic strategy, stochastically attainable goal, etc. 30

System (1) 22
worst-case expected convergence times 24
an action moves off a set 41

fully controllable 35
strongly controllable subspace 49
pure stochastic graph 65
knowledge space 67

75



List of Figures

Figure Description Page

1 nondeterministic motion 9
2 nondeterministic graph; its strategy complex 9
3 cyclic motions 10
4 graph with a cycle; its strategy complex 10
5 directed graph with three states; its strategy complex 13
6 graph with two cycle-inducing nondeterministic actions; its complex 13
7 a strongly connected graph with three states; its complex 14
8 another strongly connected graph with three states; its complex 14
9 loopback graph and complex for the graph of Fig. 5 15
10 loopback graph and complex for the graph of Fig. 6 15
11 homotopy equivalence favors more precise actions 20
12 stochastic graph with two eventually-convergent actions; its complex 21
13 stochastic graph with three uncertain actions; its complex 28
14 covering sets for the graph of Fig. 13 29
15 action tuning parameters 36
16 snapshot of designing a system by considering covering sets 37
17 design space from graph perspective 38
18 design space from covering set perspective 39
19 design space from strategy complex perspective 39
20 the design space summarized by four simplicial complexes 40
21 source and dual complexes describing the design space 45
22 attainability versus strong controllability 49
23 a sample stochastic graph, perhaps modeling air travel 52
24 nontrivial strongly controllable subspaces of the previous graph 53
25 quotient graph and a complete strategy for attaining one state 54
26 source complex of the quotient graph 54
27 interpretation of a minimal nonface 55
28 deterministic instantiation of stochastic actions preserves homotopy type 65
29 imperfect sensing causes cycling 68
30 effect of imperfect sensing on strategy complex 68
31 an imperfect sensor stratifies a graph perfectly 70

76



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] S. Akella and M. T. Mason. Posing polygonal objects in the plane by pushing. Proc. IEEE
Intl. Conference on Robotics and Automation, pages 2255–2262, 1992.

[3] A. Barr, P. Cohen, and E. Feigenbaum, editors. The Handbook of Artificial Intelligence.
William Kaufmann, Inc., Los Altos, California, 1981–1989.

[4] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J., 1957.

[5] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-
Hall, Englewood Cliffs, N.J., 1987.

[6] A. Björner. Topological methods. In R. Graham, M. Grötschel, and L. Lovász, editors,
Handbook of Combinatorics, volume II, pages 1819–1872. North-Holland, Amsterdam,
1995.

[7] A. Björner and M. Tancer. Note: Combinatorial Alexander duality — A short and
elementary proof. Discrete and Computational Geometry, 42(4):586–593, 2009.

[8] A. Björner and V. Welker. Complexes of directed graphs. SIAM J. Discrete Math,
12(4):413–424, 1999.

[9] M. Brady, J. M. Hollerbach, T. Johnson, T. Lozano-Pérez, and M. T. Mason. Robot
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